Michigan Department of Natural Resources Water Quality Division June, 1980 An Evaluation of Stream Quality Problems in the Vicinity of Jones Chemical, Monguagon Creek, Riverview, Michigan February, 1980 On February 12, 1980, Jack Bails, Chief, Environmental Enforcement Division, requested by memo, an evaluation of the impacts of unpermitted discharges from Jones Chemical on Monguagon Creek's sediments and aquatic organisms. As requested, the stream was surveyed during the week of February 18, 1980. The impacts of the large upstream Pennwalt Corporation discharge, were of necessity, also evaluated. #### FINDINGS - The discharge of very high concentrations (more than 1,000 mg/l) of extremely toxic chlorine from Jones Chemical via an unpermitted discharge has severely damaged Monguagon Creek. Macroscopic bottom dwelling stream life was absent downstream from the discharge for at least 0.15 km (kilometers). - 2. Toxic heavy metals have been discharged from Jones Chemical as sediment concentrations of zinc (18,000 mg/kg) and lead (920 mg/kg) were markedly elevated below the discharge and were also found at high levels in a discharge sump at the facility. - 3. One dead and one distressed fish (gizzard shad) were observed in Monguagon Creek below the Jones Chemical discharge. No other fish were observed. - 4. The potential for untreated human waste discharges to Monguagon Creek from Jones Chemical was apparent as toilet tissue was observed in the unpermitted discharge containing chlorine. High fecal coliform counts were also found at an in-plant sump connected with the discharge pipe. - 5. Suspended solids in runoff from Jones Chemical were high (490 mg/l) and formed an obvious deposit on the bottom of Monguagon Creek. - 6. Pennwalt Corporation's discharge upstream of Jones Chemical is apparently the major source of PCB's and oils in Monguagon Creek sediments, and is also a significant source of toxic heavy metals. Most sediment contaminants in areas impacted by the Pennwalt discharge exceeded the U.S. EPA "heavily polluted" levels for dredge spoils. - 7. A visible sheen of oil was observed on Monguagon Creek downstream of the Pennwalt Corporation's discharge (006) at all times during the study. This is a violation of their NPDES permit No. MI0002381. - 8. The Pennwalt Corporation's discharge caused some damage to Monguagon Creek as indicated by the numbers, kinds and weight of macroscopic bottom dwelling organisms. Figure 1. Location and sampling stations on Monguagon Creek, Wayne County, Michigan. February 20, 1980. Macroinvertebrate samples were collected on transects across Monguagon Creek. Samples were collected at points equidistant from the streambanks and each other along the transect. Three macroinvertebrate samples were taken where the stream was relatively narrow (stations A, B and E) while five samples were collected at stations C and D. Samples taken with the ponar bottom grab were emptied into a small plastic tub to facilitate sample transfer into plastic bags. Samples were kept cool and returned to the Water Quality Division Biology Laboratory where they were washed in a U.S. Standard 30 mesh sieve bucket the following day. Sample remains after sieving were placed in widemouth quart jars and preserved with formalin. Animals were later removed from the sample using a 4x sorting lens, identified and counted with the aid of a dissecting microscope and weighed. All values have been multiplied by a correction factor (43) to convert raw data to numbers or grams weight per square meter. Animals to be weighed were placed on a paper towel for about a minute to remove water and weighed to the nearest 0.01 gram on a Mettler balance Model P162. After weighing, the animals were placed in a permanent storage solution in 4 dram screw top vials and retained under lock and key for further reference if necessary. At each sampling site a station card was filled out to record general obvervations and/or conditions at the time. Photographs were also taken upstream and downstream from each sampling station. Photos from stations D and E were not usable because of accidental film exposure. ### BACKGROUND Monguagon Creek is located in southeastern Michigan in Wayne County and flows to the Trenton Channel (Detroit River) near Grosse Ile. The creek is named Huntington Creek on the USGS Wyandotte quadrangle 7.5 minute topographic map of 1973. Although not named on official Michigan County maps, Monguagon Creek is the recognized local name and appears on NPDES discharge permits. Monguagon Creek is a first order stream (lacks tributaries) and has a total length of about 4.2 km. The once in 10 year 7-day low flow has been estimated at 0.0 m³/day. The stream flows from its headwaters northeast to Riverview then to the Detroit River. About 1.2 km upstream from its Detroit River confluence, the Pennwalt Corporation discharges 32,700 m³/day of treated wastewater via discharge 006 under an NPDES permit (number MI0002381). A half kilometer downstream, Jones Chemical had two unpermitted discharges. Additional water and contaminants enter the stream from stormsewer discharges and urban or industrial runoff both upstream and downstream of the study area. Most of the stream in Riverview has been enclosed. All of the stream has been channelized for drainage improvement and some sections have been dredged more than once to remove accumulated materials. In the 1950's, raw sewage from Riverview was discharged into the creek and extensive fish kills occurred on occasion (Robert Parker - personal communication). Sewage discharges have since been removed. The unpermitted discharge from Jones Chemical to Monguagon Creek was found during an aerial reconnaissance flight on December 17, 1979 by William Murphy, An oil sheen was observed in the Pennwalt discharge channel and at all downstream stations during this study (Appendices X-XIII). This is in violation of the NPDES discharge permit which stipulates "no visible film" in Monguagon Creek. A single water sample collected February 20, 1980 from a 15 cm (6 inch) diameter steel pipe (#1 discharge) apparently discharging stormwater runoff and/or snow melt at the time, had 490 mg/l suspended solids (lab sheet not included) and resulted in sediment deposition in the stream (Figure 3). Some control measures should be sought for this discharge. Another water sample was taken from the other Jones Chemical discharge (#2) in which the extremely high levels of chlorine were found and analyzed for fecal coliform bacteria. Counts of fecal bacteria were less than 100 per 100 ml as would be expected with high levels of chlorine (Appendix IV). Toilet paper was seen in the effluent at the time of sampling (Appendices XI and XII). Whenever chlorine was not being discharged, raw sewage could have been discharged. In either case, treatment of human wastes would have been inadequate. ## Sediment Contaminants Substances such as heavy metals, oils and synthetic organic compounds which are relatively insoluable in water will usually be found in stream or lake sediments at concentrations many times higher than can be found in the water. Contaminants of this type will also remain bound in sediments for extended time periods and thus reflect past discharges of contaminants. Many of these sediment contaminants are toxic to aquatic life when concentrations are elevated. Presently, the degree of sediment contamination or its pollutional status is based on the 1977 EPA dredge spoils criteria. Using EPA's criteria as a basis for comparison, all stations had "heavily polluted" sediments for a number of parameters. At station A, oil (5500 mg/kg) arsenic (12 mg/kg), zinc (440 mg/kg), lead (90 mg/kg), iron (25,000 mg/kg), copper (50 mg/kg) and PCB (10 mg/kg) (Appendix VI) were the contaminants above the non-polluted level of the EPA (1977) dredge spoils criteria (Appendix VII). These sediment contaminants have probably reached Monguagon Creek via urban runoff or discharges upstream in the City of Riverview or from landfills and nearby industrialized areas. In Pennwalt's discharge channel (station B) and downstream at station C every parameter, except iron, at least doubled in concentration in sediments. In addition, cyanide (5-6 mg/kg), cadmium (6-10 mg/kg), nickel (90-120 mg/kg), and mercury (2 mg/kg) were found at "heavily polluted" areas. Immediately downstream of the Jones Chemical discharges most sediment contaminant concentrations (station D) were similar to those found upstream at Station A or C. However, higher concentrations of copper, iron, nickel, lead, zinc and manganese existed in the sample collected nearest Jones Chemical. Zinc values were 4700 mg/kg in this sample and 2500 mg/kg in the sample across the stream. As indicated before by Stone's data, the Jones Chemical discharge probably contained high levels of lead, zinc and iron. Zinc was apparently being precipitated quickly once it reached the stream and other metals at lower rates. Downstream at station E the concentration of lead (920 mg/kg), nickel (230 mg/kg), copper (250 mg/kg), chromium (390 mg/kg), cadmium (10 mg/kg) and cyanide (12 mg/kg) about doubled again. Zinc was found at 18,000 mg/kg, an extremely high sediment concentration. These very high levels of contaminants probably existed at this location mainly as a result of discharges from Pennwalt and Jones Chemical. The marked increase in certain of the above parameters in downstream sediments at station E was probably the result of additional loadings of heavy metals from Jones Chemical and the chemical reaction and precipitation of these substances after the highly chlorinated Jones Chemical discharge were mixed with the receiving waters. ## Macroinvertebrates Animal communities living in or on the bottom of lakes and streams are the best indicators of aquatic environmental conditions. These animal communities are ubiquitous in undisturbed streams. Benthic or bottom dwelling animal species which
together constitute a benthic community live most or all of their lives in the water. Aquatic insects, with rare exception, leave the water for short periods to mate and lay eggs but their immature larval stages may exist for more than a year in an aquatic environment. Aquatic worms (oligochaetes) spend all their lives in the aquatic environment. During this extended period of aquatic development they react to a myriad of physical and chemical parameters and thus are indicators of past environmental conditions. A stream comparable in size to Monguagon Creek, under relatively unmodified stream conditions, would have benthic communities made up of many species of animals without a dominant species or species group. Biomass (weight per unit area) would usually be at intermediate levels (10-50 gm/m² wet weight) and distributed among a number of species. Macroinvertebrate density (number per unit area) would usually range from 1-5000/m². Discharges of pollutants in sufficient quantities results in marked and easily detected changes in benthic community structure. Sensitive species or species groups are eliminated and the benthic community becomes dominated by more pollution tolerant forms. Under moderately polluted conditions some forms may thus reach extreme densities and biomass. If pollution is increased further, all the above benthos parameters decrease. In the most extreme situations benthic communities are absent. The macroinvertebrate communities of Monguagon Creek indicated a degraded to highly degraded stream condition (Figure 4). Pollution tolerant organisms dominated the macroinvertebrate community in the study area. Oligochaetes or aquitic worms comprised more than 90 percent of all the macroinvertebrates collected both in terms of density and biomass (Appendix VIII). Only at station A were significant numbers of midges (Procladius) collected. This animal feeds on worms but is less tolerant of extreme environmental stress than oligochaetes. Macroinvertebrate densities decreased from almost $24,000/m^2$ at station A to $318/m^2$ at station D. No macroinvertebrates were found at station E nor in the three samples closest to the Jones Chemical discharge at station D. ## Fish Only two fish (gizzard shad) were observed in this shallow, open stream. Even this was surprising under the conditions. One dead gizzard shad was found just below the Jones Chemical discharge. Apparently the fish had died recently as deterioration was not evident. The second fish was discriented and swimming in circles as it moved downstream in the vicinity of station E. Total chlorine at 1.4 mg/l was found at this station and by itself was sufficient to cause death in less than half an hour (Mattice and Zittel, 1976). ## SUMMARY AND CONCLUSIONS Benthic animals communities, or their absence in Monguagon Creek indicated stream conditions that ranged from degraded to completely degraded. Degradation or damage to the benthic communities was associated with high concentrations of sediment contaminants such as oils, toxic heavy metals, cyanide and high concentrations of chlorine in the water. Similar responses of benthic communities to such contaminants have been observed many times before (Mackenthun, 1969). Recently, Wentsel and McIntosh (1977) also found oligochaete dominated benthic communities where heavy metals in lake sediments were extremely high (cadmium-996 mg/kg, zinc-14,033 mg/kg, and chromium-2106 mg/kg) and midge larvae were present only where heavy metals decreased in the sediment. Given the concentrations of sediment contaminants in Monguagon Creek, it is improbable that the elimination of the benthic community downstream of the Jones Chemical discharge was due only to their discharge of heavy metals. The pattern of benthos elimination closely approximated the area of stream bottom impacted by the plume from the Jones Chemical unpermitted discharge with very high concentrations of extremely toxic chlorine. It is therefore very reasonable to conclude that a minimum of 0.15 km of Monguagon Creek has been damaged as a result of the unpermitted Jones Chemical discharge. Damage to Monguagon Creek undoubtedly also extends for the remaining 0.7 km to its confluence with the Trenton Channel. Sediment contaminants would surely remain at or above concentrations similar to those found downstream of the Pennwalt discharge, as most of there substances do not biodegrade readily and channel erosion processes tend to transport sediments downstream. It is not certain however, that the macroinvertebrate community has been eliminated in this lower stream reach nor could any or all damage be blamed with certainty on the upstream discharges. Storm sewers and runoff from streets, coal piles and the surrounding area would have degrading effects in the lower stream reach. Furthermore, it is not certain whether chlorine concentrations have been at toxic concentrations to the Trenton Channel in the past because chlorine readily reacts and loses its toxicity. In order to expedite the recovery of Monguagon Creek several actions should be undertaken. A study of Monguagon Creek upstream of the study site and in Riverview should be undertaken to determine the source(s) of stream contaminants. Pennwalt's wastewater treatment should be upgraded to meet NPDES requirements and the Jones Chemical discharges should either be eliminated or adequate treatment be provided to protect Monguagon Creek. In addition, the highly contaminated sediments downstream of Pennwalt and Jones Chemical should be removed, not only to facilitate stream recovery but to prevent their discharge to the Trenton Channel. PEAS 205-80 | HICHIGAN BEFT. OF NATURAL RESOURCES. ENVIRONMENTAL LARORATORY ANALYSIS — ENVIRONMENTAL QUALITY — WATER—CENTRAL USAGE LOSE 456 PROD 205T FR DOLLECTED Summer Colours TRANSFERED — RECEIVED — EARNING BULLETED SHIFLEON — STANDAR CHARLES — FR DOLLECTED Summer Colours TRANSFERED — TO AND THE PROPERTY OF STANDAR STANDARD — ST | | | | | | | | | | | | | | | | | | 2713 0 | | | |--|-------|--------|--------------------|---------|----------------|-----------|---------|--------------|---------------|---------|----------|--------------------|--------|-------------------------|-----------|-------------------------|----------------------------|----------------------------|------------------------------|-------------------------| | Supple S | | | | | | | | ~~~~~ | | | | | | MENTAL | QUALITY | - WATE | STATE! | IERAL U | SAGE | . ~i | | September James Chamiert Reversion Reference Report Re | LAB | 456 | 6 PROJ
CODE | 50 g | OST
ENTER - | F | R | COLLE | CTED y | evenue. | E. Himme | TRANS | FERED | | REC | EIVED | A | EXAMIN | Rolling | Peck | | DESCRIPTION OF SAMPLIND NO. NUMBER NUM | | | | | | | | | | | | | | revet. | | | V
100) Ba | 10_SG | ne Du | 1"/_ | | | FIELD | . E | -"DO NO
ESCRIPT | T PUNCH | | 3 | REF!S | TORET! | START
DATE | !TIME | THE | LAU
NO. | TEMP. | OXYGEN!
DIS.
MG/L | PH STAND. | COND.
125 C
USZCM | !BOD-5
!TOTAL
! MOZE | 10.0.0.
1 LOW
1 MG/L | !T.O.C.!
!AMPUL
! MO/L | NOSNO.
TOTAL
MGZL | | Color Colo | | | | | · | i | !- | | | | !! - | | 00010 | 00300 | 00400 | 00095 | 00310 | 00235 | 09490 | 100830
 | | Columbia | -1 | مدون- | المتدايمة | (iP(_i | urface) | ζ <u></u> | !_ | | | : | | | | | | | | ! | ļ | | | | | asin | VIZTZAVY
A | UP-(| Aunfrice | /i | !- | : | | | :: | | | : ; | | | | | | | | 105 106 107 108 109
109 | 2 | auc | hasyla= | -1 / | - 0 | χ! | !- | | | • | , , | - | | | | | | | | | | 106 107 108 109 | _4 | اعيدن | aylı: | -c-t(-: | surface | ≤}! | !- | الم ا | 100209 | 11650 | - | 5938 | | ļ | 11.330 | | | | | | | 107 108 109 1100 109 11100 109 11100 109 11100 109 11100 109 11100 109 11100 109 11100 109 11100 109 | | !
! | | | | ! | | · <u> </u> | | ļ | ļ ļ | | | | | | | <u> </u> | . | ļ | | 108 109 110 | | ļ | | | | ! | !- | ! | | | | | | ! | | | | | | | | Sec 100 | | ! | | ~ | | ! | !- | ·! | | ! | | | !
! | | | !
! | ! | ! | ! | | | REF NO3 NO2 NH3 KJEL N'ORTH, P PHOS. TCA TOTAL | | ! | | | | ! | 100 | !
! | | ! | | | ! | ! | ! |
 | | } | . | ! | | NO | | ! | ~~~~ | | | | 110 | !
! | | ! | !! | | ! | ! | ! | ! | ! | ! | ·! | ! | | No. | 01 C 745C 445C 345C 02 C 255C 435C 355C 03 C 9005C 7005C 3205C 04 C 1505C 435C 05 C 05 C 435C 06 C 06 C 1505C | Mili | TOTAL | TUTAL | TOTAL | TOTAL | TOTOL | TO DA | לחדי וב | AL ITO | ITAL ! | TOTAL | 1 MG/I | ! MG/L | TOTAL | REACT. | ÍTOŤAL
IMOZLÍS | TOTAL
NOZE | TOTAL | | | | 02 6 03 C 970050 75050 04 C 05 C 07 C 05 C 05 C 06 C | ! | | 100615 | 00610 | - 00625 | 70507 | - 10060 | 55 :005
! | 16 00 | 927 | | ! | 100951 | 1 | I | 100745 | .! | ! | | | | 03 C 04 C 05 C 06 C 07 C 08 C 09 C | | | . | | - | | - | | | | | ! | | ! | | | | | | | | 04 C | | | | . | | ļ | | | | | | ! | | ! | ! | | . : | | - | | | 05 C
06 C
07 C
08 C
09 C | | | - | | - | ļ | - | | | | | | | | | | | | - | | | | | | - | - | -} | Ì | - } | | | | 75030 | } | } | 16036 |] | } | .)_7_22 <u>9</u> | Ţ | -} | | | 07 C | | | - | | - | <u> </u> | -} | | | } | | } | j | Ì | ļ |] | | · | - | •} | | | 07 | 0 | | | - | ! | | | | ! | | | | | | | - | | - | · | | | | | - | ! | - ! | ! | - | | | } | | 1 | | | } | !- - | - | | - | . [| | | 00 |
Ç | - [| - [| - ! | | - | | ! | !
! | | · - | ! | ! | ! | ! | - | - ! | -! | -! | | | 10 | č | - | - | -! | ! | -! | ! | ! | ! | | ! | ! | ! | ! | ! | | -! | - | 1 | * there samples are in improper contriners because This was an emergency sampling done by a Conservation Officer | AB
06# | 4554 | FROJ
- CODE | 7£ 8 | DST
ENTER | P | R | - BY | ECTEDW | E. S. | TON | 7 | TRANSFEI
TÜ | RED4/2 | . Men | aggla REC | EIVED | | | R fize | | |----------------|--------------------------------------|------------------------------------|--------------------------------------|--|---------------------------------------|-----------------|------------------|----------------------------|----------------------|----------------|---------------------|-----------------------|--------|--------------------|-----------|-----------------------------------|--------------------------------|-----------------------|---------------------------------------|--------------------------------| | OCA: | ien J. | 22.00 | Chein | ucal_C | O | Rive | והוגוה | şamf
Kina | res K | q.t | All | V4 | | | SEND I | results
& Sect | ION E | li stru | ייייייייייייייייייייייייייייייייייייי | <u>~</u> | | ELD). | | "DO NOT
SCRIPT
TE OR S | PUNCH
ION OF
SAMPLE | SAMPLING | ! | REF
NO.
P | STORET
NUMBER | START
DATE
YYMMDD | TIME | S.T
OR
B | NUM
SAM-
FLES | END
DATE
YYMNDD | TIME | DEP-
TH
FEET | 2 | TEMP.
DEGRÉE
CENT.
00010 | PH
STAND.
UNITS
00400 | MOVE
MOVE
20060 | #UD-5
TOTAL
MG/L
00310 | 10.0.E
HIGH
MOZU
0034 | | | Pipe | th Sa | eerP. | | | C01 | | 30 c2 14 | 12:15 | | | | | | 5159 | | | hone | ! | | | 2 | in_th | e ru | Thirda. | Sume | | C02 | | | 12.15 | | | i | | | SIEO | | | 1.94 | | | | ز
 | OUTE | IL_a | I | <u> </u> | ! | 003 | | | 12.40 | | \
 | | | | 516L | | | high:
)
 |)
 | | 4 | | | · | | ! | CO4 | | | 12.45 | | | | ļ
 | | 5102 | |
 | 11194 | ļ | | | 5 | | · <u>/</u> | | - <u>'</u> / | ! | 005 | | <u>''</u> | 12.45 | | | | | | 2183- | | !
 | 9194_ | [| | | - - | \~ <u>`</u> '' | | | but ton | أحددجرد | C05 | | | 13.40 | ! | | | | | 2134 | | | high_ | | | | ·Ľ | Com. | I.a.U. | | lost_Lsz. | : | 008 | | ļ | 12,40 | | | | | | 72762 | | | vscy 4.4 | !
! | ļ | | | } | | | | !
! | 009 | | ! | | | | | | | | | | | | | | | ! | | | | | C10 | | <u> </u> | | ! | ! | | ! | ! | | | ! | ! | ! | | | | | | ~~~~~ | | | | | | | | | | | | | | | | **=*= | | | EF ! | T.O.C.
AMPUL !
MG/L
OO680 ! | NOGNOZ
TOTAL
MÖZL N
OGGGO | !`NH3
!TOTAL
!MG/L N
!00610 | !ORG N
!TOTAL
!!MOZL N
!OOGO5 | !PHOS.
!TOTAL
!MG/L F
!00665 | 700
800 | AL TO | \$=
TAL T/
1/L \$ (1 | 1074
1074
1074 | Na | 29 | | | | | | | !
!
! | | | | 01 | | | | (c | ! | •! ——· | 6. | ! | 50 | 4CER | | | | | | | ! | | ! | | | 02 | | ! ~~~~
! | | 0 | | -: | 00. | : | ルア | 8000 | ; | ! | | | - ! | | | | | | | 03 | | | | C | | 10 | 30. | | 44 | 1450 | 2 | | | | | | | | | | | 04 | | ;
;
; | | ic | | 33 | ω, | | UT | 830 | 0 | | i | | _ | i | i
 | i
i | | _i | | 05 | | i
! | i
! | <u>'C</u> | | 20 | 20. | | NT | 270 | 0 | | į | | _ | | | | . | i.
- | | 06_ | | !
! | . | <u> c</u> | | 14/ | <u> </u> | :- | | 2900 | | | | | _ | ! | . | ! | ·! | - ! | | 67 | | !
! | | . <u> c</u> | | 120 | 000 | \ | NT. | 770 | 00 | | ! | | | | .] | . | - | | | 08 !
 | |] | .] | -!C
-!= | | - | | | | | | | | | | . | | | | -
-
- | | 09 ! | | | . } | C | • | 1 | | . ! | | _ | : | | - 1 | | _ | . i | . i | . i | | _ | 15- ## APPDNDIX V Royce E. Smith Managing Director Dubne R. Egeland Deputy Riphaging Director, Director of Engineering Chester Wozniak Assistant Managing Director, Director of Administration John E. Breen Director of Legal Services John W. Hubert Director of Finance Rex McCormick Deputy Secretary Wayne County Public Works 900 West Lafayette Detroit, Michigan 48226 313 224 . 3620 On February 20, 1980, 3:00 p.m. Bill Murphy of the Department of Natural Resources brought in four samples to be tested for residual chlorine. The samples were collected within one half of an hour of analysis. I tested the samples as numbered below. | ₽2 | 0.5 | P.P.M. | free chlorine 4.3 P.P.M. total chlorine | |------------|------|----------|--| | ₽ 3 | 0.1 | P.P.M. | free chlorine | | #4 | 9500 | P.P.M. | free chlorine 9900 P.P.M. total chlorine | | # 5 | 0.4 | P. P. M. | free chlorine 1.4 P.P.M. total chloring | All samples tested using D.P.D. method of chlorine analysis. Thomas Shoens, Chemist Wayne County Public Works TS/cla April 1977 U.S. EPA Dredged Spoil Disposal Criteria Classification Guidelines for Great Lakes Harbors. Values in mg/kg dry weight, values otherwise noted. | Parameter | Non
Polluted | Moderately
Polluted | Heavily
Polluted | |--------------------------------|-----------------|------------------------|---------------------| | Volatile solids % | < 5 | 5-8 | >8 | | COD | <40,000 | 40-80,000 | >80,000 | | TKN | <1,000 | 1,000-2,000 | >2,000 | | Oil & Grease (Hexane Solubles) | <1,000 | 1,000-2,000 | >2,000 | | Lead | <40 | 40-60 | >60 | | Zinc | <90 | 90-200 | >200 | | Ammonia | <7 5 | 75-200 | >200 | | Cyanide | < 0.10 | 0.10-0.25 | >0.25 | | Phosphorus | <420 | 420-650 | >650 | | Iron | <17,000 | 17,000-25,000 | >25,000 | | Rickel . | <20 | 20-50 | >50 | | Manganese | <300 | 300-500 | >500 | | Arsenic | <3 | 3-8 | >8 | | Cadmium | * | * | >6 | | Chromium | <25 | 25-75 | >75 | | Barium | <20 | 20-60 | >60 | | Copper | <25 | 2550 | >50 | | Hercury | | | · <u>≥</u> 1 | | Total PCB's ** | | • | <u>></u> 10 | ^{*} Lower limits not established ^{**} The pollutional status of sediments with total PCB concentrations between 1 and 10 mg/kg dry weight will be determined on a case-by-case basis. APPENDIX IX MICHIGAN DEPARTMENT OF NATURAL RESOURCES BIOLOGY SECTION STREAM PROBLEM ASSESSMENT MATER QUALITY DIVIDION Investigator(s) EVANS, HORVATH MURPHY PHOTOGRAPH HUMBER 11, 12, 13 Date 2 1201 20 TIME 12:30 BODY OF MATER ALONGWINGS A CK LOCATION RIVERVIEW COUNTY WAYNE TYSRIES 5 THE RIVERVIEW REASON FOR SURVEY JOINES CHEMICAL - PENNWALT DISCHARGE IMPACTS Other INDUSTAINS VICINITY LAND USE: Mostly Forest Mostly Urban Mostly Agriculture AVE. STREAM WIDTH 7 m AVE. STREAM DEPTH 0.5 m VELOCITY < 0.12 ms مشرح را STREAM km___ STREAM SHADING: 0pen Partly Open Shaded STREAM TYPE: Coldwater Warnwater WATER TEMP. 5 °C AIR TEMP. 6 °C WEATHER: Sunny - Partly Cloudy - Cloudy - Rainy DAM u/s: Yes No HIGH WATER MARK 0.16 m CHANNELIZED: Yes No CHANNEL EROSION: None - Slight - Moderate - Severe MATER COLOR_____ SECCHI DISC TRANS: ____ m TUFBIDITY: Clear_ Slightly Turbid - Turbid - Opaque WATER OPERS: Horma 1 Sewage Petroleum Chemical Other__ Slick Globs SURFACE DILS: None Sheen Flecks SEDIMENT ODORS: Normal Sevage Petroleum Checical Anaerobic Other SEDIMENT OILS: Absent Slight Profuse Moderate TWISS + Sawdust Paperfiber Relict Shells Other LEGVES DEPOSITS: Sludge Sand ARE THE UNDERSIDES OF STOVES WHICH ARE NOT DEEPLY INBEDDED IN SUBSTRATE BLACK? מא Ni FLOS PERCENT IN SUBSTRATE SUBSTRATE VELOCITY CHARACTERISTICS CHARACTER!STICS PERCENT IN OR SIZE SAMPLING AREA TYPE OR SIZE SAMPLING AREA TYPE m/sec BOULGERS*__ 256 mm (10") dia. CLAY Slick texture >1.2 - (>3 fps) RUBBLE*____ 64-256 mm (2.1-10") dia. MARL Grey, shell fragments (>2 fps) DETRITUS Sticks, wood, coarse plant materials >0.3 (>1 fps) 2-64 mm (0.1-2.5") dia. GRAVEL*___ 5 0.06-2.00 mm dia. Partially decomposed >0.2 (>0.7 fps) 5 FIBROUS SAHD Gritty texture PEAT plant material 0.004-0.006 mm dia. PULPY SILT >0.12 Finely divided plant (>0.4 F.S) PEAT material, parts indistinguishable | BIOTA: | | | | | | | | | | | | |-------------------|---|---|---|---|---|--------------------|------------|---|---|---|---| | PHYTOPLANKTON | 0 | 1 | 2 | 3 | 4 | SL IMES | 0 | 1 | 2 | 3 | 4 | | PERIPHYTON | 0 | 1 | 2 | 3 | 4 | ZOOPLAHKTON | 0 | 1 | 2 | 3 | 4 | | FILAMENTOUS ALGAE | 0 | 1 | 2 | 3 | 4 | MACROINVERTEBRATES | 0 | 1 | 2 | 3 | 4 | | MACROPHYTES | 0 | 1 | 2 | 3 | 4 | HZIF | · <u> </u> | 1 | 2 | 3 | 4 | 9 o C . Aprent 1 - Sparse -0.12 (-0.4 fps) *IMBEDDECHESS: 0 * MONE MUCK-MUD 2 - Moderate black, very find organic 1 = 1/3 OR LESS 2 : 2/3 CR MORE 4 - Abundant LOGS & STICKS 4 - Profuse ## APPENDIX X MICHIGAN DEPAREMENT OF NATURAL PESOURCES WATER QUALITY DIVISION BIOLOGY SECTION STREAM PROBLEM ASSESSMENT | | | parse | | | - Moder | | | - Abund | | | | 4 - Pro | _ | |--|-------------------|----------|--------------------|----------------|-----------|-------------------------|--------------|-----------------|---------|----------------------|--------------------|---------|--------------------------| | ACROPHYTES | | 1 | 2 | 3 | 4 | FISH | | | 0 | . 1 | 2 | , | 7 | | ILAMENTOUS ALGAE | 0 | 1 | 2 | 3 | 4 | | NVERTEE | BRATES | | - 1 | 2 | 3 | 4 | | ERIPHYTON | 0 0 | 1 | 2 | 3 | 4 | ZOOPLA | | | 0 | . 1 | 2 | 3 | 4 | | HYTOPLANKTON | 0 | 1 | 2 | 3 | 4 | SLIMES | | | _0 | 1 | 2 | 3 | 4 | | IO <u>TA</u> : | | | | | | | | | | | | | _ | | | | | | | - 2/3 | | | | | | | | | | • 0 . 4 .
• 0 . 4331036038MI | - | | '3 OR LE | | 2 = 2/3 (| | | LUGS & | STIC | KS | | | | | UCK-MUD →0. | 12 | black, | , very (| find or | ganic | 50 | | | | indistin | | | | | ILT >0.
(>0.4 | 12 | • | 0.006 | | | | | PULPY
PEAT | | Finely d
material | | | | | AHD >0.
(>0.7 | | | 2.00 mm
r textu | | | 50 | | FIBROU
PEAT | | Partiall
plant ma | | pose1 | | | ************************************** | | 2-64 1 | na (0.1- | -2.5") | dia. | | | DETRIT | | Sticks,
plant ma | | | | | *UBBLE* >0.
(>2 f | | 64-25 | 6 en ⊓ (. | 2.1-10" |) dia. | | | MARL | | Grey, sh | ell fra | gments | | | 0ULDERS* >1. | 2
'ps) | 256 m | m (10" |) dia. | | | | CLAY | | Slick te | xture | | | | SUBSTRATE VELOC
TYPE m/se | | C | HARACTE
OR_S | RISTICS
IZE | ;
 | PERCENT
SAIPLING A | | SUBSTR
TYPE | | | ACTERIS
OR SIZE | | PERCENT I
SAMPLING AR | | FLC | | | | | | | | | | | | | | | EPOSITS:
RE THE UNDERSIDES | Sludge
OF STON | | Sawdust
H AZF N | | • | er San
Dago in Subst | | | | nells
YES | Uther | | NA | | EDIMENT OILS: | Absen | | •••• | Sligt | ~ | | | 6_1 | * | | 044 | _ | | | EDIMENT ODDES: | | | Sewa | - | | leum C
Moderate | | ! | Aı | naerobic
Profuse | . 01 | ther | | | SURFACE OILS: | Non- | e
 | 511 | ick | | Sheen | | Globs | | Flo | cks | | | | MATER ODORS: | | 1 | | vage | P | etroleum | • | Chemica | • | | | | | | SECCHI DISC TRANS: | | | | | | | • | | | | | | | | CHANNELIZED: Yes | | | | | - | | | | | | | | | | WATER TEMP. // | _°C AIR | TEMP. | 5_0 | C WI | EATHER: | Sunny - Partl | y Cloud | <u>dy</u> – C1o | udy,– | Rainy I | CAM u/s | : Yes | No | | STREAM SHADING: | Open | <u>P</u> | rtly O | pen | Shaded | STREAM | TYPE: | С | o I dwa | ter | Warmwa | ter | | | AVE. STREAM WIDTH_ | _5_ | m / | AVE. STI | REAM DE | PTH | 3 m VE | LOCITY | >0. | 12 | ms S | TREAH | km/ | .30 | | VICINITY LAND USE: | Mostl | y Fores |
s t | Mostly | Urban | Mostly Ag | ricult | ure | Oth | er // | 1000 | TK | !AL | | REASON-FOR SURVEY_ | | ONE | S_C | HEN | 11CA | L-PEN | <u>'N'il</u> | / الشرر | | 0156 | | - G E | | | COUNTY WAYN | | | | | | | | | | | | | | | BODY OF WATER 1 | | | | | | | | | | | | | | | Date <u>2 1201</u> | | _ | | | | | | | | • | | | | | | | | | | | | | | | | | | | #### APPENDIX XI MICHIGAN DEPAPTMENT OF NATURAL RESOURCES BIOLOGY SECTION STREAM PROBLEM ASSESSMENT WATER QUALITY DIVISION Investigator(s) EVANS HOPVETH Date 2 120180 TIME 13:15 PHOTOGRAPH HIMAREP 18, 19, 20 BODI OF HATER MONGUM SON CLEEK LOCATION RIVERVIEW COUNTY WAYN'S TYS RIJES 5 THP RIVERVIEW REASON FOR SURVEY JONES CHELLICAL -
PENNWILT DISCHAPIF IMPACTS Other INDUSTRIAL VICINITY LAND USE: Mostly Forest Mostly Urban Mostly Agriculture AVE. STREAM HIDTH . 20 m AVE. STREAM DEPTH O. 7 m VELOCITY 0. /2 ms STREAM KA 0.75 STREAM TYPE: Coldwater STREAM SHADING: Open Partly Open Shaded Warmwater WATER TEMP. 7.7 °C ALR TEMP. 5 °C WEATHER: Sunny-Partly Cloudy-Cloudy-Rainy DAM u/s: Yes No km CHANNELIZED: Yes No CHANNEL EROSION: None - Slight - Moderate - Severe HIGH WATER MARK 0.15 m SECCHI DISC TRANS: ____ m TURBIDITY: Clear_ Slightly Turbid - Turbid - Opaque MATER COLOR____ WATER ODORS: Normal Petroleum Chemica? Other Sewage SURFACE DILS: None Slick Globs Flecks Sheen SEDIMENT ODORS: Normal Sewage Petroleum Chemical Anserobic Other____ SEDIMENT OILS: Slight Absent Moderate Profuse DEPOSITS: Sludge Sawdust Paperfiber Sand Relict Shells Other ARE THE UNCERSIDES OF STONES WHICH ARE NOT DEEPLY IMBEDDED IN SUBSTRATE BLACK? YES NA FLOW SUBSTRATE VELOCITY CHARACTERISTICS PERCENT IN SUESTRATE CHARACTERISTICS PERCENT IN OR SIZE SAMPLING AREA TYPE OR SIZE SAMPLING AREA TYPE m/sec CLAY Slick texture BOULDERS* 256 mm (10") dia. >0.6 (>2 fps) RUBBLE*_ 64-256 mm (2.1-10") dia. MARL Grey, shell fragments GRAVEL*_ >0.3 DETRITUS Sticks, wood, coarse plant materials 2-64 mm (0.1-2.5") dia. 5 (>1 fps) >0.2 0.06-2.00 mm dia. FIBROUS Partially decomposed SAND (>0.7 fps) PEAT plant material Gritty texture SILT >0.12 0.004-0.005 mm dia. PUIL PY Finely divided plant (>0.4 fps) material, parts indistinguishable 95 -9.12 MUCK-MUD black, very find organic LUGS & STICKS (-0.4 fps) * IMBEDDEDNESS: 0 = NONE 1 = 1/3 OR LESS 2 = 2/3 CR MORE BIOTA: SLIMES PHYTOPLANKTON PERIPHYTON 1 2 3 ZOOPLANKTON 2 1 **MACROINVERTEBRATES** 2 3 FILAMENTOUS ALGAE 2 MACROPHYTES FISH G - Aprent 1 - Sparse 2 - Moderate 3 - Abundant 4 - Profuse ## APPENDIX XII MICHIGAN DEPARTMENT OF NATURAL RESOURCES WATER QUALITY DIVISION BIOLOGY SECTION STREAM PROBLEM ASSESSMENT | FLOW SUBSTRATE VELOCITY CHARACTERISTICS PERCENT IN SUBSTRATE CHARACTERISTICS | 4 | |--|------------| | AVE. STREAM HIDTH 20 m AVE. STREAM DEPTH 0.3 m VELOCITY 0.1 ms STREAM km 0. STREAM SHADING: Open Partly Open Shaded STREAM TYPE: Coldwater Marmiter MATER TERP. 7.7 °C AIR TEMP. 5 °C MEATHER: Sunny-Partly Cloudy-Cloudy-Rainy DAM W/s: Yes No CHANNEL EROSION: None Slight Moderate Severe HIGH MATER MARK COSCOUNTS OF TAXS: m TURBIDITY: Clear Slightly Turbid - Turbid - Opaque MATER COLOR — MATER COORS: Normal Sewage Petroleum Chemical Other SURFACE OILS: None Slick Sheen Globs Flecks SEDIMENT DOORS: Normal Sewage Petroleum Chemical Anaerobic Other SEDIMENT DOORS: Normal Sewage Petroleum Chemical Anaerobic Other SEDIMENT DOORS: Slugge Sawdust Paperfiber Sand Relict Shells Other ARE THE UNDERSIDES OF STONES WHICH ARE NOT DEPLY IMPEDOED IN SUBSTRATE SLACK? YES NO ASSEDIMENT OF THE MYSEC OR SIZE SIZE SIZE OF TYPE MYSEC OR SIZE SIZE SIZE SIZE OF TYPE MYSEC OR SIZE SIZE SIZE SIZE OF TYPE OR SIZE SIZE SIZE SIZE SIZE SIZE SIZE SIZE | 4 | | AVE. STREAM NIDTH 20 m AVE. STREAM DEPTH 0.3 m VELOCITY 0.12 ms STREAM km 0. STREAM SHADING: Open Partly Open Shaded STREAM TYPE: Coldwater Marmwater MATER TEP2. 7.7 °C AIR TEMP. 5 °C MEATHER: Sunny-Partly Cloudy-Cloudy-Rainy DAM u/s: Yes No CHANNELIZED: Yes No CHANNEL EROSION: None Slight Moderate Severe HIGH WATER MARK 6 SECCHI DISC TRANS: m TURBIDITY: Clear Slightly Turbid Turbid Opaque WATER COLOR MATER COORS: Normal Sewage Petroleum Chemical Other SUNFACE CILS: None Slick Sheen Globs Flecks SEDIMENT ODORS: Normal Sewage Petroleum Chemical Anaerobic Other DEPOSTS: Sludge Sawdust Paperfiber Sand Relict Shells Other ARE THE WHOERSIDES OF STONES WHICH ARE NOT DEPOSTS: SINGH WHOERSIDES OF STONES WHICH ARE NOT DEPOSTS SAMPLING SREA TYPE OR SIZE SAMPLING SREA TYPE OR SIZE SAMPLING SREA TYPE OR SIZE SAMPLING SREA CO.3 °C fps) SUBSTRATE VELOCITY CHARACTERISTICS PERCENT IN TYPE M/SEC OR SIZE SAMPLING SREA TYPE OR SIZE SAMPLING SREA TYPE OR SIZE SAMPLING SREA CO.3 °C fps) SUBSIRATE VELOCITY CHARACTERISTICS PERCENT IN TYPE OR SIZE SAMPLING SREA SREAM SAMPLING SREAM TYPE OR SIZE SAMPLING SAMP | 4 | | AVE. STREAM HIDTH 20 m AVE. STREAM DEPTH 0.3 m VELOCITY 0.72 ms STREAM km 0. STREAM STREAM STREAM DEPTH 0.3 m VELOCITY 0.72 ms STREAM km 0. STREAM ST | • | | AVE. STREAM HIDTH 20 m AVE. STREAM DEPTH 0.3 m VELOCITY 0.12 ms STREAM km 0. STREAM SHADING: Open Partly Open Shaded STREAM TYPE: Coldwater Marmwiter MATER TEPP. 7.7° C AIR TEMP. 5° C MEATHER: Sunny-Partly Cloudy-Cloudy-Rainy DAM u/s: Yes No CHAINEL EROSION: None Slight Moderate Severe HIGH WATER MARK 6 SECCHI DISC TRANS: m TURBIDITY: Clear Slightly Turbid — Turbid — Opaque WATER COLOR MATER COORS: Normal Sewage Petroleum Chemical Other SUBSTRATE OILS: None Slick Sheen Globs Flecks SEDIMENT ODORS: Normal Sewage Petroleum Chemical Anaerobic Other Other SEDIMENT ODORS: Normal Sewage Petroleum Chemical Other SEDIMENT ODORS: Normal Sewage Petroleum Chemical Other SUBSTRATE CHARACTERISTICS | 4 | | AVE. STREAM WIDTH 20 m AVE. STREAM DEPTH 0,3 m VELOCITY 0.12 ms STREAM km 0. STREAM SHADING: Open Partly Open Shaded STREAM TYPE: Coldwater Marmater MATER TEPP. 7.7° C AIR TEMP. 5° C MEATHER: Sunny-Partly Cloudy-Cloudy-Rainy DAM u/s: Yes No CHAINEL EROSION: None Slight — Moderate — Severe HIGH MATER MARK 0. SECCHI DISC TRANS: — m TURBIDITY: Clear—Slightly Turbid—Turbid—Opaque MATER COLOR — MATER COORS: Normal Sewage Petroleum Chemical Other — SURFACE OILS: None Slick Sheen Globs Flecks SEDIMENT ODORS: Normal Sewage Petroleum Chemical Anaerobic Other — SEDIMENT OILS: Absent Slight Moderate — Profuse DEPOSTS: Sludge Sawdust Paperfiber Sand Relict Shells Other — MARE THE UNDERSIDES OF STONES WHICH ARE NOT DEPLY IMPEDDED IN SUBSTRATE BLACK? YES NO A SUBSTRATE BLACK? YES NO A SUBSTRATE VELOCITY CHARACTERISTICS PERCENT IN SUBSTRATE CHARACTERISTICS TYPE M/Sec OR SIZE SAMPLING AREA (3) fps) OULDERS' — >1.2 256 mm (10°) dia. ON SIZE SAMPLING AREA (1) FIROLOGY OF SIZE SAMPLING AREA (1) fps) AND | | | AVE. STREAM WIDTH 20 m AVE. STREAM DEPTH 0,3 m VELOCITY 0.12 ms STREAM km 0. STREAM SHADING: Open Partly Open Shaded STREAM TYPE: Coldwater Marmater WATER TEPP. 7.7°C AIR TEMP. 5°C MEATHER: Sunny-Partly Cloudy-Cloudy-Rainy DAM w/s: Yes No CHAINEL EROSION: None Slight Moderate Severe HIGH WATER MARK 0 SECCHI DISC TRANS: m TURBIDITY: Clear—Slightly Turbid—Turbid—Opaque WATER COLOR WATER COORS: Normal Sewage Petroleum Chemical Other SERFACE OILS: None Slick Sheen Globs Flecks SEDIMENT ODORS: Normal Sewage Petroleum Chemical Anaerobic Other SEDIMENT OILS: Absent Slight Moderate Profuse SEDIMENT OILS: Absent Slidge Sawdust Paperfiber Sand Relict Shells Other WERE THE UNDERSIDES OF STONES WHICH ARE NOT DEPLY IMPRODUCED IN SUBSTRATE BLACK? YES NO A SUBSTRATE VELOCITY CHARACTERISTICS PRECENT IN SUBSTRATE CHARACTERISTICS TYPE OR SIZE SIMPLING AREA (33 fps) OULDERS' >1.2 | | | AVE. STREAM WIDTH 20 m AVE. STREAM DEPTH 0, 3 m VELOCITY 0.12 ms STREAM km 0. STREAM SHADING: Open Partly Open Shaded STREAM TYPE: Coldwater Marmwater MATER TERP. 7.7° C AIR TEMP. 5° C MEATHER: Sunny-Partly Cloudy-Cloudy-Rainy DAM W/s: Yes No CHAINELIZED: Yes No CHAINEL EROSION: None Slight — Moderate — Severe HIGH WATER MARK 0. SECCHI DISC TRAIS: | | | AVE. STREAM MIDTH 20 m AVE. STREAM DEPTH 0,3 m VELOCITY 0.12 ms STREAM km 0. STREAM SHADING: Open Partly Open Shaded STREAM TYPE: Coldwater Marmwater MATER TERP. 7.7 °C AIR TEMP. 5 °C MEATHER: Sunny-Partly Cloudy-Cloudy-Rainy DAM u/s: Yes No CHAMMELIZED: Yes No CHAMMEL EROSION: None Slight Moderate Severe HIGH WATER MARK C SECCHI DISC TRANS: m TURBIDITY: Clear—Slightly Turbid—Turbid—Opaque MATER COLOR— MATER COORS: Normal Sewage Petroleum Chemical Other SURFACE CILS: None Slick Sheen Globs Flecks SEDIMENT ODORS: Normal Sewage Petroleum Chemical Anaerobic Other SEDIMENT OBORS: Absent Slight Moderate Profuse DEPOSYTS: Sludge Sawdust Paperfiber Sand Relict Shells Other SURFACE OLIS: Absent Slight Moderate Profuse NO MARC THE UNDERSIDES OF STONES WHICH ARE NOT DEPLY IMPEDDED
IN SUBSTRATE BLACK? YES NO MIDDLE NOR SIZE SAMPLING AREA SUBSTRATE VELOCITY CHARACTERISTICS PERCENT IN TYPE MYSEC OR SIZE SI COULDERS* >1.2 COOR SIZE SAMPLING AREA OR SIZE SI CLAY Slick texture MARL Grey, shell fragments DETRITUS Sticks, wood, coarse plant materials FIBROUS Partially decomposed PEAT plant materials LIT >0.12 0.00:-0.006 mm dia. PULPY Finely divided plant | | | AVE. STREAM NIDTH 20 m AVE. STREAM DEPTH 0.3 m VELOCITY 0.12 ms STREAM km 0. STREAM SHADING: Open Partly Open Shaded STREAM TYPE: Coldwater Marmwater MATER TEMP. 7.7 °C AIR TEMP. 5 °C MEATHER: Sunny-Partly Cloudy-Cloudy-Rainy DAM u/s: Yes No CHANNELIZED: Yes No CHANNEL EROSION: Mone Slight Moderate Severe HIGH HATER MARK Cosecution of Turbid Disc Trans: m Turbiolity: Clear—Slightly Turbid—Turbid—Turbid—Depaye HATER COLOR—MATER COORS: Normal Sewage Petroleum Chemical Other—Surface OLLS: None Slick Sheen Globs Flecks SEDIMENT ODORS: Normal Sewage Petroleum Chemical Anaerobic Other—SEDIMENT OLLS: Absent Slight Moderate Profuse DEPOSITS: Sludge Sawdust Paperfiber Sand Relict Shells Other— ARE THE UNDERSIDES OF STONES WHICH ARE NOT DIEPLY IMPEDDED IN SUBSTRATE BLACK? YES NO AIR TYPE MAJec OR SIZE SAMPLING AREA FOOT TYPE MAJec OR SIZE SAMPLING AREA (>3 fps) CLAY Slick texture (>3 fps) CLAY Slick texture (>2 fps) CLAY Slick texture DETRITUS Sticks, wood, coarse plant materials RAVEL*— (>0.0 CLAY Slick texture PIBROUS Partially decomposed | | | AVE. STREAM WIDTH 20 m AVE. STREAM DEPTH 0.3 m VELOCITY 0.12 ms STREAM km 0. STREAM SHADING: Open Partly Open Shaded STREAM TYPE: Coldwater Mammater MATER TEP2. 7.7 °C AIR TEMP. 5 °C MEATHER: Sunny-Partly Cloudy-Cloudy-Rainy DAM u/s: Yes No CHANNELIZED: Yes No CHANNEL EROSION: Mone Slight Moderate Severe HIGH MATER MARK Color mater 090RS: mormal sewage Petroleum Chemical Other SURFACE OILS: None Slick Sheen Globs Flecks SEDIMENT ODORS: Normal Sewage Petroleum Chemical Anderobic Other SEDIMENT OILS: Absent Slight Moderate Profuse DEPOSITS: Sludge Sawdust Paperfiber Sand Relict Shells Other SEDIMENT OILS: Absent Slight Moderate Profuse DEPOSITS: Sludge Sawdust Paperfiber Sand Relict Shells Other SHEET THE UNDERSIDES OF STONES WHICH ARE NOT DIEPLY IMPEDDED IN SUBSTRATE BLACK? YES NO A SIZE SAMPLING AREA (-3 fps) SUBSTRATE VELOCITY CHARACTERISTICS PERCENT IN TYPE Mysec OR SIZE SAMPLING AREA (-3 fps) SUBBLE* 30.6 64-256 mm (2.1-10") dia. STREAM WELLOTTE SLICKS, wood, coarse plant materials | | | AVE. STREAM WIDTH 20 m AVE. STREAM DEPTH 0.3 m VELOCITY 0.12 ms STREAM km 0. STREAM SHADING: Open Partly Open Shaded STREAM TYPE: Coldwater Marmmater MATER TEMP. 7.7° C AIR TEMP. 5 °C MEATHER: Sunny-Partly Cloudy-Cloudy-Rainy DAM u/s: Yes No CHANNELIZED: Yes No CHAINEL EROSION: None — Slight — Moderate — Severe HIGH WATER MARK 0 SECCHI DISC TRANS: m TURBIDITY: Clear Slightly Turbid — Turbid — Opaque WATER COLOR WATER COORS: Normal Sewage Petroleum Chemical Other SURFACE OILS: None Slick Sheen Globs Flecks SEDIMENT ODORS: Normal Sewage Petroleum Chemical Anaerobic Other SEDIMENT OILS: Absent Slight Moderate Profuse DEPOSYTS: Sludge Sawdust Paperfiber Sand Relict Shells Other ARE THE UNDERSIDES OF STONES WHICH ARE NOT DIEPLY IMPEDDED IN SUBSTRATE BLACK? YES NO A SUBSTRATE VELOCITY CHARACTERISTICS PERCENT IN SUBSTRATE CHARACTERISTICS TYPE M/Sec OR SIZE SAMPLING AREA TYPE OR SIZE SI SOULDERS* >1.2 | J | | AVE. STREAM HIDTH 20 m AVE. STREAM DEPTH 0.3 m VELOCITY 0.72 ms STREAM km 0. STREAM SHADING: Open Partly Open Shaded STREAM TYPE: Coldwater Marmmater MATER TEMP. 7.7 °C AIR TEMP. 5 °C MEATHER: Sunny-Partly Cloudy-Cloudy-Rainy DAM u/s: Yes No CHARMELIZED: Yes No CHARMEL EROSION: None Slight Moderate Severe HIGH WATER MARK C SECCHI DISC TRANS: m TURBIDITY: Clear—Slightly Turbid — Turbid — Opaque WATER COLOR — WATER 000RS: Normal Sewage Petroleum Chemical Other SURFACE OILS: None Slick Sheen Globs Flecks SEDIMENT OILS: Absent Slight Moderate Profuse DEPOSTS: Sludge Sawdust Paperfiber Sand Relict Shells Other ARE THE UNDERSIDES OF STONES WHICH ARE NOT DEEPLY IMPEDDED IN SUBSTRATE BLACK? YES NO SUBSTRATE VELOCITY CHARACTERISTICS PERCENT IN SUBSTRATE CHARACTERISTICS TYPE m/sec OR SIZE SAMPLING AREA FEDN: SUBSTRATE VELOCITY CHARACTERISTICS PERCENT IN SUBSTRATE CHARACTERISTICS TYPE OR SIZE SAMPLING AREA BOULDERS* 31.2 256 mm (10") dia. CLAY Slick texture MARL Grey, shell fragments | ہے | | AVE. STREAM HIDTH 20 m AVE. STREAM DEPTH 0.3 m VELOCITY 0.12 ms STREAM km 0. STREAM SHADING: Open Partly Open Shaded STREAM TYPE: Coldwater Harmwater MATER TEMP. 7.7°C AIR TEMP. 5°C MEATHER: Sunny-Partly Cloudy-Cloudy-Rainy DAM u/s: Yes No CHANNELIZED: Yes No CHANNEL EROSION: None Slight Moderate Severe HIGH WATER MARK 0. SECCHI DISC TRANS: m TURBIDITY: Clear—Slightly Turbid—Turbid—Opaque WATER COLOR—WATER COORS: Normal Sewage Petroleum Chemical Other— SURFACE OILS: None Slick Sheen Globs Flecks SEDIMENT ODORS: Normal Sewage Petroleum Chemical Anaerobic Other— SEDIMENT ODORS: Absent Slight Moderate Profuse DEPOSYTS: Sludge Sawdust Paperfiber Sand Relict Shells Other— ARE THE UNDERSIDES OF STONES WHICH ARE NOT DIEPLY IMDEDDED IN SUBSTRATE BLACK? YES NO A SUBSTRATE VELOCITY CHARACTERISTICS PERCENT IN TYPE M/sec OR SIZE SAMPLING AREA TYPE CHARACTERISTICS TYPE m/sec OR SIZE SAMPLING AREA TYPE CHARACTERISTICS TYPE m/sec OR SIZE SAMPLING AREA TYPE CHARACTERISTICS BOULDERS*—>1.2 256 mm (10*) dia. CLAY Slick texture | | | AVE. STREAM NIDTH 20 m AVE. STREAM DEPTH 0.3 m VELOCITY 0.12 ms STREAM km 0. STREAM SHADING: Open Partly Open Shaded STREAM TYPE: Coldwater Marmmater MATER TEMP. 7.7 °C AIR TEMP. 5 °C MEATHER: Sunny-Partly Cloudy-Cloudy-Rainy DAM u/s: Yes No CHANNELIZED: Yes No CHANNEL EROSION: None Slight Moderate Severe HIGH WATER MARK COSCCHI DISC TRANS: m TURBIDITY: Clear—Slightly Turbid—Turbid—Opaque MATER COLOR—MATER COCKS: Normal Sewage Petroleum Chemical Other— SURFACE OILS: None Slick Sheen Globs Flecks SEDIMENT ODORS: Normal Sewage Petroleum Chemical Anaerobic Other— SEDIMENT OILS: Absent Slight Moderate Profuse DEPOSITS: Sludge Sawdust Paperfiber Sand Relict Shells Other— ARE THE UNDERSIDES OF STONES WHICH ARE NOT DIEPLY IMBEDOED IN SUBSTRATE BLACK? YES NO ABBSTRATE VELOCITY CHARACTERISTICS FLONT SUBSTRATE VELOCITY CHARACTERISTICS PERCENT IN SUBSTRATE CHARACTERISTICS | | | AVE. STREAM WIDTH 20 m AVE. STREAM DEPTH 0.3 m VELOCITY 0.12 ms STREAM km 0. STREAM SHADING: Open Partly Open Shaded STREAM TYPE: Coldwater Marmwater MATER TEMP. 7.7 °C AIR TEMP. 5 °C MEATHER: Sunny-Partly Cloudy-Cloudy-Rainy DAM u/s: Yes No CHANNELIZED: Yes No CHANNEL EROSION: None Slight Moderate Severe HIGH WATER MARK COSECCHI DISC TRANS: m TURBIDITY: Clear—Slightly Turbid—Turbid—Opaque WATER COLOR—WATER COORS: Normal Sewage Petroleum Chemical Other SURFACE OILS: None Slick Sheen Globs Flecks SEDIMENT ODORS: Normal Sewage Petroleum Chemical Anaerobic Other SEDIMENT OILS: Absent Slight Moderate Profuse DEPOSITS: Sludge Sawdust Paperfiber Sand Relict Shells Other ARE THE UNDERSIDES OF STONES WHICH ARE NOT DEPLY IMPEDDED IN SUBSTRATE BLACK? YES NO A | MPLING ARE | | AVE. STREAM HIDTH 20 m AVE. STREAM DEPTH 0.3 m VELOCITY 0.12 ms STREAM km 0. STREAM SHADING: Open Partly Open Shaded STREAM TYPE: Coldwater Marmwater MATER TEMP. 7.7 °C AIR TEMP. 5 °C WEATHER: Sunny-Partly Cloudy-Cloudy-Rainy DAM u/s: Yes No CHANNEL EROSION: None Slight — Moderate — Severe HIGH WATER MARK 0. SECCHI DISC TRANS: m TURBIDITY: Clear Slightly Turbid — Turbid — Opaque WATER COLOR — WATER ODORS: Normal Sewage Petroleum Chemical Other SURFACE OILS: None Slick Sheen Globs Flecks SEDIMENT ODORS: Normal Sewage Petroleum Chemical Anaerobic Other SEDIMENT ODORS: Absent Slight Moderate Profuse DEPOSYTS: Sludge Sawdust Paperfiber Sand Relict Shells Other DEPOSYTS: Sludge Sawdust Paperfiber Sand Relict Shells Other | PERCENT IN | | AVE. STREAM WIDTH 20 m AVE. STREAM DEPTH 0.3 m VELOCITY 0.12 ms STREAM km 0. STREAM SHADING: Open Partly Open Shaded STREAM TYPE: Coldwater Marmwater MATER TEMP. 7.7 °C AIR TEMP. 5 °C MEATHER: Sunny-Partly Cloudy-Cloudy-Rainy DAM u/s: Yes No CHANNEL EROSION: None — Slight — Moderate — Severe HIGH WATER MARK 0. SECCHI DISC TRANS: m TURBIDITY: Clear — Slightly Turbid — Turbid — Opaque WATER COLOR — MATER COORS: Normal Sewage Petroleum Chemical Other SURFACE OILS: None Slick Sheen Globs Flecks SEDIMENT ODORS: Normal Sewage Petroleum Chemical Anaerobic Other SEDIMENT ODORS: Normal Sewage Petroleum Chemical Anaerobic Other SEDIMENT ODORS: Absent Slight Moderate Profuse | VA | | AVE. STREAM HIDTH 20 m AVE. STREAM DEPTH 0.3 m VELOCITY 0.12 ms STREAM km 0. STREAM SHADING: Open Partly Open Shaded STREAM TYPE: Coldwater Marmwater MATER TEMP. 7.7 °C AIR TEMP. 5 °C MEATHER: Sunny-Partly Cloudy-Cloudy-Rainy DAM u/s: Yes No CHANNEL EROSION: None — Slight — Moderate — Severe HIGH WATER MARK 0. SECCHI DISC TRANS: m TURBIDITY: Clear — Slightly Turbid — Turbid — Opaque MATER COLOR — MATER COORS: Normal Sewage Petroleum Chemical Other SURFACE OILS: None Slick Sheen Globs Flecks | | | AVE. STREAM WIDTH 20 m AVE. STREAM DEPTH 0.3 m VELOCITY 0.12 ms STREAM km 0. STREAM SHADING: Open Partly Open Shaded STREAM TYPE: Coldwater Marmwater MATER TEMP. 7.7 °C AIR TEMP. 5 °C MEATHER: Sunny-Partly Cloudy-Cloudy-Rainy DAM u/s: Yes No CHANNELIZED: Yes No CHANNEL EROSION: None — Slight — Moderate — Severe HIGH WATER MARK 0. SECCHI DISC TRANS: m TURBIDITY: Clear — Slightly Turbid — Turbid — Opaque WATER COLOR — MATER ODORS: Normal Sewage Petroleum Chemical Other SURFACE OILS: None Slick Sheen Globs Flecks | | | AVE. STREAM WIDTH 20 m AVE. STREAM DEPTH 0.3 m VELOCITY 0.12 ms STREAM km 0. STREAM SHADING: Open Partly Open Shaded STREAM TYPE: Coldwater <u>Warmwater</u> MATER TEMP. 7.7 °C AIR TEMP. 5 °C WEATHER: Sunny-Partly Cloudy-Cloudy-Rainy DAM u/s: Yes No CHANNEL EROSION: None — Slight — Moderate — Severe HIGH WATER MARK 0. SECCHI DISC TRANS: m TURBIDITY: Clear — Slightly Turbid — Turbid — Opaque WATER COLOR — MATER COORS: Normal Sewage Petroleum Chemical Other | | | AVE. STREAM WIDTH 20 m AVE. STREAM DEPTH 0.3 m
VELOCITY 0.12 ms STREAM km 0. STREAM SHADING: Open Partly Open Shaded STREAM TYPE: Coldwater <u>Warmwater</u> MATER TEMP. 7.7 °C AIR TEMP. 5 °C WEATHER: Sunny-Partly Cloudy-Cloudy-Rainy DAM u/s: Yes No CHANNEL EROSION: None — Slight — Moderate — Severe HIGH WATER MARK 0. SECCHI DISC TRANS: m TURBIDITY: Clear — Slightly Turbid — Turbid — Opaque WATER COLOR — MATER COORS: Normal Sewage Petroleum Chemical Other | | | AVE. STREAM WIDTH 20 m AVE. STREAM DEPTH 0.3 m VELOCITY 0.12 ms STREAM km 0. STREAM SHADING: Open Partly Open Shaded STREAM TYPE: Coldwater Marmwater MATER TEMP. 7.7 °C AIR TEMP. 5 °C MEATHER: Sunny-Partly Cloudy-Cloudy-Rainy DAM u/s: Yes No CHANNEL EROSION: None — Slight — Moderate — Severe HIGH WATER MARK 0. SECCHI DISC TRANS: m TURBIDITY: Clear — Slightly Turbid — Turbid — Opaque WATER COLOR — | | | AVE. STREAM HIDTH 20 m AVE. STREAM DEPTH 0.3 m VELOCITY 0.12 ms STREAM km 0. STREAM SHADING: Open Partly Open Shaded STREAM TYPE: Coldwater <u>Marmwater</u> MATER TEMP. 7.7 °C AIR TEMP. 5 °C WEATHER: Sunny-Partly Cloudy-Cloudy-Rainy DAM u/s: Yes No CHANNELIZED: Yes No CHANNEL EROSION: None — Slight — Moderate — Severe HIGH WATER MARK 0 | | | AVE. STREAM HIDTH 20 m AVE. STREAM DEPTH 0.3 m VELOCITY 0.12 ms STREAM km 0. STREAM SHADING: Open Partly Open Shaded STREAM TYPE: Coldwater <u>Marmwater</u> MATER TENP. 7.7 °C AIR TEMP. 5 °C MEATHER: Sunny-Partly Cloudy-Cloudy-Rainy DAM u/s: Yes No | | | AVE. STREAM WIDTH 20 m AVE. STREAM DEPTH 0,3 m VELOCITY 0.12 ms STREAM km 0. STREAM SHADING: Open Partly Open Shaded STREAM TYPE: Coldwater <u>Warmwater</u> | | | AVE. STREAM HIDTH 20 m AVE. STREAM DEPTH 0.3 m VELOCITY 0.12 ms STREAM km 0. | | | | 68 | | | | | | | | REASON FOR SUPVEY JONES CHENICAL - PENNUALT DISCHARGE | MERC | | COUNTY WAYNE TYPRIJES 5 THE RIVERVIEW | | | BODY OF WATER MIDNIGHE GON CREEK LOCATION RIVER VIEW | | | Date 2 120189 TIME 13:45 PHOTOGRAPH MUMBER | | | itation Number D Investigator(s) EVA NS HORVATE | | ## APPENDIX XIII MICHIGAN DEPARTMENT OF NATUPAL RESOURCES WATER QUALITY DIVISION BIOLOGY SECTION STREAM PRODLEM ASSESSMENT | Station Kumber E | | Investigator(s) | FVANS | HOLIATI | | |---------------------------------------|----------------------------|--------------------------------|--------------------|---------------------------------------|-------------------------------| | Date 2 /32 /80 | | | , | | | | BODY OF WATER MONG | | | | | | | COUNTY WITH VIE | | | | | | | REASON FOR SURVEY | | | | | | | . T | | | | | | | VICINITY LAND USE: Most | | - - | culture Oth | ner INDUST | PIBL | | AVE. STREAM WIDTH 13 | | | | | | | STREAM SHADING: Ope | n Partly Open | Shaded STREAM T | YPE: Coldwa | iter <u>Warmwater</u> | <u>.</u> | | WATER TEMP. 7,7 °C AL | R TEMP. 5.6 °C W | EATHER: Sunny - Partly | Cloudy - Cloudy- | Rainy DAM u/s: | Yes NoI | | CHANNELTZED: Yes No | CHANNEL EROSION: N | one — Slight — Mode | rate - Severe | HIGH WATER I | ARK 0.15 | | SECCHI DISC TRAIS: | | | | | | | WATER ODORS: Norm | al Sewage | Petroleum | Chemical | Gther | | | SURFACE OILS: No | ne Slick | Sheen | Globs | | | | | | | | | | | SEDIMENT ODORS: Norma | al Sewage | Petroleum Cher | micel A | naerobic - Othe | r | | SEDIMENT OILS: Absen | nt Slig | ht Moderate | | Profuse | | | DEPOSITS: Sludg | ge Sawdust : | Paperfiber Sand | Relict S | hells Other_ | | | ARE THE UNDERSIDES OF STO | HES WHICH ARE NOT DEE! | PLY IMBEDOED IN SUBSTRA | TE BLACK? | YES N | <i>بر</i> کړ ه | | FLGII | | | | | | | SUBSTRATE VELOCITY TYPE m/sec | CHARACTERISTICS
OR SIZE | S PERCENT IN
SAMPLING AREA | | CHARACTERISTI
OR SIZE | CS PERCENT IN
SAMPLING ARE | | TTTC III/ SEC | OK 3122 | . JANTE 140 BAE | | <u> </u> | SHAFETHO AND | | \$1.2
(>3 fps) | 256 mm (10™) dia. | | CLAY | Slick texture | | | RUBBLE* >0.6 | 64-256 mm (2.1-10" | 'l dia | MARL | Grey, shell fragme | ents | | (>2 fps) | 04-230 MIN (2.1-10 | , 4.4. | | orey, sherr visg | | | GRAVEL* >0.3
(>1 fps) | 2-64 mm (0.1-2.5°) | dia. | DETRITUS | Sticks, wood, coar plant materials | ·se 5 | | SAND >0.2 | 0.06-2.00 mm dia, | | FIBROUS | Partially decompos | sed | | (>0.7 fps) | Gritty texture | | PEAT | plant material | | | SILT >0.12
(>0.4 fps) | 0.004-0.006 mm dia. | 5 | PUL PY | Finely divided pla
material, parts | int | | MUCK-MUD +0.12 | black, very find or | ganic 90 | | indistinguishable | | | | diack, very ring or | game 70 | LOGS & STIC | KS . | | | (-0.4 fps) | | | 1. | | | | (+0.4 Tps)
PIMBEDDEDNESS: 0 = NONE | 1 = 1/3 OR LESS | 2 + 2/3 CR MORE | | | | | • | 1 • 1/3 OR LESS | 2 - 2/3 CR MORE | | | | | IMBEDDEDMESS: O - NONE | 1 • 1/3 OR LESS | 2 • 2/3 CR MORE | | | | | • | 1 = 1/3 OR LESS | | 0 | 1 2 | 3 4 | | MYTOPLANKTON 0 - MORE | 1 2 3 | 4 SLIMES | | 1 2 | | | INTA: HYTOPLANKTON O PERIPHYTON O | 1 2 3 | 4 SLIMES 4 ZOOPLANK | | -
1 2 | | | INTA: HYTOPLANKTON O PERIPHYTON O | 1 2 3
1 2 3
1 2 3 | 4 SLIMES 4 ZOOPLANK 4 MACROINY | TCN 0 ERTEBRATES 0 | -
1 2 | 3 4 | | MO 33 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | REE OF SAMPLE RAMETER LYZED BY ODC Nos. YANDO SOI SOA SOI SOA SOI SOA SOI SOA SOI SOA | STATION TA INF INF EFF EFF SLINGER | COND
Q25°C
Aumbre
986
—
792 | TOTAL SOLIDS my/P 4/53 — (538 — — | 343P.
8061D3
mg/f
3472
(3576)
21 | CHECKED BY | esz. | TOTAL
CYANIDE
My 12
4.005 | DATE DATE OIL 4 GLEASE MY 11 | / & v | |--|---|--|--|-----------------------------------|---|----------------------|--|------------------------------------|------------------------------|------------------| | MO 31 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | CODO NOS. SOLI SOLI SOLI SOLI SOLI SOLI SOLI SOL | STATION TA INF EFF EFF SLAJ6A | COND
@ 25°C
Aumber
986 | TOTAL
804185
mg/l
4153 | 343P.
8361D3
mg 18
3472
(3576) | BODS- | 7074L
PHENSC
mg/8
0.056 | TOTAL
CYANIDE
My 12
4.005 | OIL & GREASE | / & v | | MO 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 000 Nos.
144200
501
504
508
511
523 | INF INF EFF EFF SLM16A | 986 | TOTAL
80LIDS
mg/P
4153 | 3472
(3576) | BODs
mg 18
626 | 7074L
PHENSC
MJ18
0.056 | TOTAL
CYANIDE
My 12
4.005 | OIL A
GREASE
MIL | / & v | | 3) S S S S S S S S S S S S S S S S S S S | 94~DO
SOI
SOA
SOB
SII
SZ3 | INF INF EFF EFF SLMJ6A | 986 | 301.03
mg/R
4153 | 3472
(3576) | 626 | PHENOL
MJ18
0.056 | 12 L.005 | OIL A
GREASE
My / A | | | 3) S S S S S S S S S S S S S S S S S S S | 94~DO
SOI
SOA
SOB
SII
SZ3 | INF INF EFF EFF SLMJ6A | 986 | 301.03
mg/R
4153 | 3472
(3576) | 626 | PHENOL
MJ18
0.056 | 12 L.005 | mil | | | 5
5
5
5
5 | 501
504
508
511
523 | INF
EFF
EFF
SLUJGS | 986
— | 4153 | 3472
(3576) | 626 | 0.056 | 1.005 | - | | | 5 S S S S S S S S S S S S S S S S S S S | 504
508
5/1
523 | INF
EFF
SLMBGE | | 4153 | 3472
(3576) | | 0.056 | 4.005 | - | | | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 508
5//
523
ENN | Stugey
Ere
Ere |
792
 | - 6 | (3576) | | | | 66 | | | S S S S S S S S S S | 5//
523
ENN | EFF
Slubby | 792 | 538 | | 16 | 0.007 | | | Í | | S | S 23 | 864365 | | | - | | for the same of th | 0.096 | | | |) S | ENN | | _ | | | | | (0.092) | <1 | | | 5 | | M AI T | | | | | 0.026 | ₹.005 | | | | 5 | | 45 A) T | | | | | | | | | | 5 | | 417 | COND | SHLFIDE | 3400 | 3005 | PHENAL | | G43 | 374 | | 5 | <u> १५२</u> | | unhos | mg 18 | 364103 | 218 | ng 10 | 54mp# | 21 gm | | | 5 | | 001 | 232 | - | 8 | - | - | So2 | 21 | 001 | | 5 | | ···· | | | | | | So3 | 3 | ೦೮ | | ;
; | 504 | 002 | 276 | - | /1 |
| | 505 | <1 | 00 | | ;
; | | | | | | | | 306 | <1 | 007 | | 5 | 537 | 003 | 629 | | 5 | | l | 308 | 2 | 000 | | 5 | | | | | | | | 509 | <1 | 003 | | | 5 10 | 005 | 21,608 | _ | < 5 | | | 511 | <1 | ده ص | | Ļ | | | | | | | | 512 | | 003 | | 1 | 3/3 | 006 | 244 (| SIA) <.02 | 10 | 9 | 0.011 | 314 | <1 | 006 | | | | · | | 3 <u>5</u> <.02 | · · · - <u> · · · - · · · · · · · · · ·</u> | | | 315 | <1 | 006 | | 5 | 516 | INF | 232 | | 6 | 3 | 4.002 | 517
518 | <u> </u> | 125 | | | D19 | JNF | 232 | | 8 | <2 | <.00Z | | | | | S | 529 | INF TO | 247 | S30 < .02 | 7 | | 0.039 | | | | | Γ | | Doub# 4 | | (33) < 02 | | - | | | | | | | 520 | DF T #2 | | | | **** | 0.620 | | | | | | | NETO #1 | | | | | 4.002 | | | | | <u></u> | [| | | | | | | | | | | <u></u> | | | | | | | 1 | | | | | ļ | <u>.</u> | [| | | | | | | Run on | | | MICHIGAN DEPARTMENT OF NATURAL RESOURCES ENVIRONMENTAL PROTECTION BUREAU POINT SOURCE STUDIES SECTION Report of an Industrial Wastewater Survey Conducted at PENNWALT CHEMICAL CORPORATION All Outfalls No. 820298 MPDES No. 810002381 Wayne County Wyandotte, Michigan July 7-8, 1980 #### Curvey Comary Wastewater monitoring was performed during one twenty-four hour survey pariod starting Monday, July 7, 1980. The results of this survey are compared to the final limitations in the facility's National Pollutant Discharge Elimination System (NPDES) Permit, No. 4301 as established under Final Order of Abatement No. 1981 entered on Active 20, 1977. Dated on that comparison the BODs loading limitations at outfall 821088 (CSS, was exceeded during the survey (Table 3). The survey results are compared to the company's self-monitoring results resorted in the Monthly Operating Peport (MOR). The comparison of these results is presented as Table 3. The only major discrepancies occurred at the intake, 82919. Survey concentrations for suspended solids are significantly lower than the concentrations reported by the company on the survey dates. The total iron concentration found at the intake during the survey was also significantly less than any reported by the company for the month (Table 3). The composite samples were split with the company for comparison of laboratory results. The companison is presented as Table 4. No major discrepancies are noted. The last survey performed at this facility was in November, 1978. Since a last variety reveral process changes have occurred at the plant. The performan, or thould and anhydrous coustic process have all been discontinued. Also the vicual fernic process waters have been routed from outfall 003 to outfall 105. These changes have resulted in a sharp decrease in the chlorides concentration and increase in the total iron concentration this survey at outfall 105. A simificant decrease in total iron concentration is also noted at outfall 105 (Table 5). #### Survey Com ents The sal armoniac process was down during the survey period. The results from organic scans performed for various volatile organics, acid extractables and base/neutral extractables are presented in Table 2. A 96-hour acute toxicity evaluation of outfall 005 was performed by the bioassay unit the same week in which his survey was conducted. The results from this study are included in a separate report. #### Plant Processes The Pennwalt Corporation in Wyandotte manufactures organic and inorganic chemicals in two separate plants. The inorganic plant manufactures chlori-Alkali industrial chemicals and iron chlorides. The organic plant manufactures industrial organic chemicals and miscellaneous special organic corpounds. The inorganics plant or east complex utilizes salt brine, ammonia, solica, scrap iron and various other naw materials. A process schematic of the plant is depicted in Figure 1. Production facilities and the plant layout are shown in Figure 2. The organics plant or west complex synthesizes organic compounds from various raw organic materials. The chief products are alkylamines and rubber chemicals. About 100 different compounds are produced at the plant. Figure 3 illustrates the plant layout. Production at both plants was considered normal during the survey. Both plants operate 24 hrs/day, 7 days/wk. The inorganic plant employs about 300 people and the organic plant about 250 people. #### Water Supply, Wastewater & Treatment All process and cooling water used in both plants is obtained through two intakes on the Trenton Channel of the Detroit River. The north intake (820411) supplies only the barometric condensers in the evaporator department. The south intake (820409) services the remainder of the inorganic plant, the organic plant and the Detroit Edison Plant in the east complex. Nomestic water is supplied by the City of Detroit. Both intakes have a continuous backwash on the intake screens. The south intake's backwash is discharged into the Detroit Edison plant's outfall. Both backwashes are unpermitted. The water from the south intake is periodically chlorinated. Non-contact cooling water from the chlorine liquidation process is discharged through outfall $829224\ (001)$. Outfall 820190 (002) discharges cooling water from the barametric condensers and chlorine cell room, rinse wall from sodium hydroxide storage tanks, flur gas scrubber water, sulfuric acid tank cooling water and yard drainage. About 95 of the wastewater originates from the barometric condensers. The pH of the Asstewater is adjusted using carbon dioxide, sulfuric acid or caustic prior to discharge. Cutfall 820193 (003) discharges cooling water from the ammonium chloride process. The pH is adjusted using carbon dioxide, sulfuric acid or caustic prior to monitoring and discharge into the Wayne County Drain No. 5. Seal water from the liquid ferric pumps, chlorine cell room drains, wash water from the evaporators, wash water from the tank room and back wash from two of the filters used to filter caustic are discharged via outfall 820223 (199). The combined waste streams are provided settling in one of two settling labors. Following continuous pH adjustment with carbon dioxide, sulfurno acid or caustic, if necessary, the wastewater is monitored and enters a Wayne County Train prior to entering the Detroit River. The laguon which is not being used for settling is dredged and the solids disposed of by deep well injection. The lagoon not in use is also used to receive any wastewater sense and from the replacement of the asbestoes diagram filters in the chlorine cell room. All process and cooling water from the organics plant or west complex is treated as depicted in Figure 3. Pond 1 receives wastes from the pilot plant. Freelic wastes are discharged to Pond 2 for equalization of loadings from the plant. Following a third pond these wastes, other process wastes and cooling vater are discharged to Pond 4. The cooling water which comprises about 55 of the total flow through outfall 006 is discharged into the end of Pond 4. The rajor treatment provided in the treatment scheme is equalization of slut loads, settling and oil skimming and pH adjustment as necessary using sulfuric acid or caustic. After Pond 4 the wastewater is discharged to Mongaron Creek through outfall 821088 (006). Sludge from the wastewater treatment in the organics plant and residues from plant processes are discharged in a containment lagoon south of the organics class. All sanitary wastes are discharged to the city's sanitary sewer system. #### Survey Procedure The flows and samples were obtained as follows: | | Flow Measurement | Sampling | |-----------------------|---|---| | achic: (501) | Company totalizer. | Automatic air activated sampler & individual grabs. | | 826190 (002) | Company totalizer. | Submergible sampler & individual grabs. | | EXC193 (003) | Company totalizer. | Automatic air activated sampler & individual grabs. | | 82022 3 (005) | 11.25 inch Parshall flume and water level recorder. | Automatic air activated sampler | | 321133 (606) | Company totalizer. | Automatic air activated sampler & individual grabs. | | 820412 (North Intake) | None | Submergible sampler & individual grabs. | | 820409 (South Intake) | None | Submergible sampler & individual grabs. | A water level recorder provides a continuous account of the liquid level or head through a flume. A head versus time graph is obtained for the duration of the survey period. The total volume of wastewater through the flume during the survey period is computed from the graph. An automatic sampler composites samples at timed intervals. A submergible sampler obtains samples at a continuous rate. Polychlorinated biphenyl (PCB) and sulfide composite samples are collected by the grab composite method. An individual grab is a single instantaneous sample. Samples were analyzed by the Environmental Protection Bureau Laboratories located in Lansing. Samples were preserved according to Table 6. The results of the physical, chemical and bacteriological analyses are presented in Tables 1 & 2. Pennwalt Chemical Corporation - Wyandotte Tible 1 Analyses of composite samples. | - 1 | | | | | | | |--|--|-------------------------------|--|--------------------------|--|--| | lutfalls | 820224 | (1001) | 820190 | (002) | | | | Carvey Period From
To | |) - 1345
) - 1345 | |) - 1655
) - 1655 | | | | Shortused flow rate* (M^3/day) | (21, | ,500) | (55,400) | | | | | | mg/1 | kg/day | mg/1 | kg/day | | | | Suscended solids
Dissolved solids | 14
160 | 300
3,40 0 | 15
200 |
830
10,000 | | | | ż | 7
2.0 | 200
43 | 9
2.4 | 500
130 | | | | Prenci | 0.607 | 0.2 | < 0.005 | | | | | Notrite Nonifrate nitrogen-Noncola nitrogen-Noneldahl nitrogen-Notritoprosphates-Portal phosphorus-P | 0.36
0.23
0.48
0.04
0.07 | 7.7
4.9
10.
0.9
2 | 0.32
0.24
0.52
0.05
0.09 | 18
13
29
3
5 | | | | Chiorides | | | 36. | 2,000 | | | | Total cadrium (Co) Total chromium (Cr) Total cotter (Cu) Total cotter (Ci) Total lead (Fb) Total airc (Zn) Total iron (Fe) | < 0.02
< 0.05
< 0.02
< 0.05
< 0.05
< 0.05
< 0.76 |

16 | < 0.02
< 0.05
< 0.02
< 0.05
< 0.05
< 0.05
0.77 | 43 | | | ^{*} Figurates used in the computation of kg/day (obtained from company totalizer/MOR). To cotain MSD multiply M3/day by 0.0002642 To obtain 1bs/day multiply kg/day by 2.205 Pennwalt Chemical Corporation - Wyandotte | Table 1 (continued) | | | | | |---|---|----------------------------|--|--------------------------------------| | Outfalls | 820193 | (003) | 82022 | 3 (005) | | Survey Period From
To | |) - 1445
) - 1445 | | 0 - 1555
0 - 1555 | | Computed flow rate* (M ³ /day)
Highest flow rate (M ³ /day)
Lowest flow rate (M ³ /day) | (23, | 200) | | - 7-8-80 0 0023
- 7-8-80 0 0022 | | | mg/1 | kg/day | mg/1 | kg/day | | Suspended solids
Dissolved solids | 13
390 | 300
9,0 00 | 27
16,000 | 120
69,00 0 | | COD
TOC | 11
2.4 | 260
56 | Int
1.6 | 6.9 | | Phenol | 0.007 | 0.2 | < 0.005 | | | Nitrite & nitrate nitrogen-N
Ammonia nitrogen-N
Kjeldahl nitrogen-N
Orthophosphates-P
Total phosphorus-P | 0.47
0.64
1.1
0.06
0.17 | 11
15
26
1
3.9 | 0.41
0.18
0.33
0.02
0.05 | 1.8
0.78
1.4
0.09
0.2 | | Chlorides
Sulfate (SO ₄)
Magnesium (Ng)
Sodium (Na)
Calcium (Ca) | 148 | 3,430 | 7,500
2,200
1
6,800 | 33,000
9,500
4
30,000
61 | | Total cadmium (Cd) Total chromium (Cr) Total copper (Cu) Total nickel (Ni) Total lead (Pb) Total zinc (Zn) Total iron (Fe) Total mercury (Hg) | < 0.02
< 0.05
< 0.02
< 0.05
0.009
< 0.05
0.78 | 0.2 | 0.04
< 0.05
0.03
< 0.05
< 0.005
< 0.05
0.59
< 0.001 | 0.2

0.1

2.6 | ^{*} Flow rates used in the computation of kg/day (obtained from company totalizer/MCR). Int - Interference To obtain MGD multiply M3/day by 0.0002642 To obtain 1bs/day multiply kg/day by 2.205 | <u>Table 1</u> (continued) | | | | |--|---|-----------------------------|--| | Cutfalls | 821088 | (006) | 820412 (Intake) | | Survey Period From
To | |) - 1415
) - 1415 | 7-7-80 - 1635
7-8-80 - 1635 | | Computed flow rate* (M3/day) | (32 , | ,500) | | | | mg/1 | kg/day | <u>mg/1</u> | | Suscended solids
Dissolved solids | 8
160 | 300
5, 200 | 6
4 00 | | 0 | 37
15. | 1,200
490 | 9
2.3 | | Ther:1
Culfide (S) | 0.009 | 0.3 | < 0.005
 | | 1005 | 15. | 490 | 3.5 | | Nitrite & nitrate nitrogen-N
Amoria nitrogen-N
Kialdani nitrogen-N
Inthoconschates-P
Total chosphorus-P | 0.34
0.46
3.6
0.01
0.08 | 11
15
120
0.3
3 | 0.30
0.27
0.64
0.02
0.08 | | Chilomides | 21 | 680 | 26. | | Total cadrium (Cd) Total conomium (Cr) Total cooper (Cu) Total nickel (Ni) Total lead (Pb) Total zine (Zn) Total iron (Fe) | 0.02 0.05 0.02 0.05 0.095 0.05 0.57 |

19 | < 0.02
< 0.05
< 0.02
< 0.05
< 0.05
< 0.05
0.52 | | | <u>ug/1</u> | | 1/رو | | .3 1242
FSB 1854
FSB 1863 | 0.10.10.1 |
 | < 0.2
< 0.1
< 0.1 | $^{^{+}}$ Flow rates used in the computation of kg/day (obtained from company totalizer/MOR). To obtain MSD multiply M3/day by 0.0002642 To obtain lbs/day multiply kg/day by 2.205 ## Pennwalt Chemical Corporation - Wyandotte | Table 1 (continued) | | |--|--| | Outfall | 820409 (South Intake) | | Survey Period From
To | 7-7-80 - 1530
7-8-80 - 1530 | | | <u>mg/1</u> | | COD
TOC | 9
2.2 | | Phenol | < 0.005 | | Nitrite & nitrate nitrogen-N
Ammonia nitrogen-N
Kjeldahl nitrogen-N
Orthophosphates-P
Total phosphorus-P | 0.30
0.26
0.56
0.03
0.06 | | Chlorides
Sulfate (SO ₄) | 13.5
16 | | Total cadmium (Cd) Total chromium (Cr) Total copper (Cu) Total nickel (Ni) Total lead (Pb) Total zinc (Zn) Total iron (Fe) | < 0.02
< 0.05
< 0.02
< 0.05
< 0.05
< 0.05
0.21 | Jable 2 (continued) | • | Ortho- | Total | | | S B | Total
diss. | Total | Total | Tuesl | Total | | |---|---------|---|-----------|---------|--------|----------------|---------|----------------|----------|--------|-----| | Daka Tama | | | Chlarides | Sulfide | Susp. | | | | Total | | | | _DateTime | | hphistophorus P | | | solids | olids | cadmium | copper. | Chromium | nickej | | | 020214 (2011 | maj/ I | 1/100 | mg/T | 100 / L | m-1/1 | msp/ 1 | mg/l | my/1 | πமு/ 1 | mg/ l | | | 820224 (001) | | | | | | | | | | | | | 7-7-80 12255 | | 0.09 | 12.0 | | 11 | | •- | | | | | | 7-8-8U | 0.01 | 0.10 | 12.5 | | 25 | | | | | | | | 820190 (002) | | | | | | | | | | | | | 1-1-50 2230 | 0.04 | 0.14 | 40. | | 16 | 210 | < 0.02 | < 0.02 | < 0.05 | < 0.05 | | | 7-8-80 0900 | 0.05 | 0.14 | 37. | | 16 | 180 | 0.02 | . 0.02 | < 0.05 | < 0.05 | | | 820193 (003) | | | | | | | | | | | | | 7-7-80 2350 | 90.0 | 0.15 | 140 | | 13 | 380 | < 0.02 | < 0.02 | < 0.05 | < 0.05 | | | 7-8-80 0945 | 0.07 | 0.17 | 149 | - | 14 | 410 | < 0.02 | < 0.02 | < 0.05 | < 0.05 | | | 820223 (005) | | • | | | • • | | | 0.00 | . 0.00 | . 0 | | | 7-7-80 2400 | 0.02 | 0.04 | 5,400 | | 6 | 12,000 | 0.03 | 0.02 | < 0.05 | < 0.05 | | | 7-8-80 1010 | | 0.07 | 8,500 | | 19 | 20,000 | 0.04 | 0.04 | < 0.05 | | -10 | | 821098 (006) | 0.03 | 0.07 | 0,500 | | • • • | 20,000 | 0.04 | 0.04 | ₹ 0.03 | · 0.03 | 9 | | 7-7-80 2120 | < 0.01 | 0.08 | 18.0 | < 0.01 | 13 | 140 | < 0.02 | < 0.02 | < 0.05 | . 0.05 | | | | | 0.10 | 21 | < 0.01 | ii | 160 | | | | < 0.05 | | | | 50.0 | 0.10 | 21 | < 0.01 | 11 | 160 | < 0.02 | < 0 .02 | < 0.05 | < 0.05 | | | 820412 (North | | | | | | | | | | | | | 7-7-80 2215 | 0.03 | 0.07 | 14.7 | | | | < 0.02 | < 0.02 | < 0.05 | < 0.05 | | | 7-8-80 0345 | 0.03 | 0.09 | 13.1 | | | ' | < 0.02 | < 0.02 | < 0.05 | < 0.05 | | | | Intake) | | | | | _ | | | | | | | 7-7-80 1550 | | | | | 16 | 1 30 | | | | | | | 7-8 -80 1115 | | | | | 16 | 140 | | | | | | | | | | | | | | | | | | | Table 2 Analyses of grab samples | Table 2 Anal | yses of g | rab samp | ores. | | | | | | | Nitrite & | | | |--|----------------------|-------------------------|---|---------------------|----------------------|--------------|-------------|------------------|--------------|-----------------------------|-----------------------------|------------------------------| | Date Time | Temp.1 | pH ¹
S.U. | Residual ¹
Chlorine
mg/l | 0%G
1.R.
mg/1 | O&G
Grav.
mg/l | COD
mg/1 | TOC
mg/1 | Phenol
mg/l | 8005
mg/1 | nitrate
nitrogen
mg/l | Ammonia
nitrogen
mg/l | Kjeldahl
nitrogen
mg/l | | 820224 (001)
7-7-80 2255
7-8-80 0825 | 23.5
24.0 | 7.7
7.7 | U
U | | | 8
10 | 2.3
3.0 | | | 0.36
0.35 | 0.20
0.26 | 0.44
0.58 | | 820190 (002)
7-7-80 2230
7-8-80 0000 | 33.5
34.0 | 7.8
8.0 | T
0.3 | 1 | < 2
< 2 | 7
18 | 2.2 | | | 0.43
0.33 | 0.22
0.30 | 0.51
0.71 | | 820193 (003)
7-7-80 1430
7-7-80 2350
7-8-80 0945 | 26.0
26.5 | 7.7
8.0 | 1.05
1.10
0.90 |
2
1 | < 2
< 2 | 11
13 | 2.4
2.6 | •• | | 0.46
0.45 | 0.61
0.68 | 1.0
1.1 | | 820223 (005)
7-7-80 2400
7-8-80 1010 | 27.0
30.0 | 7.9
8.0 | U
U | < 1 | < 2
< 2 | Int.
Int. | 1.4 | | | 0.32
0.34 | 0.15
0.24 | 0.44
0.92 | | 821088 (006)
7-7-80 2120
7-8-80 1000 | 28.0
29.0 | 8.6
8.7 | U
U | 9
3 | 14
2 | 45
32 | 11.
6.6 | < 0.005
0.021 | 13.
8.8 | 0.35
0.38 | 0.38
0.55 | 1.4 | | 820412 (North
7-7-80 2215
7-8-80 0845
820409 (South | 21.5 | 7.7
7.7 |
 | 1 | < 2
2 | 10
11 | 2.3
2.8 | | 3.3
4.8 | 0.30
0.29 | 0.25
0.33 | 0.49
0.63 | | 7-7-80 1550
7-8-80 0745
7-8-80 1115 | 20.0
20.5
20.5 | 8.0
7.6
8.0 | †
†
† | < 1 | < 2
< 2 | 11

10 | 2.3 | | | | | | ^{1 -} Values determined in the field at time of sampling. U - Undetected T - Trace amount present - actual concentration less than 0.2 which is the quantifiable amount. Int. - Interference Table 2 (continued) | _Date | Total
Lead
Eq.() | local
zinc
Pg/1 | Total
Tron
mg/f | Total
mercury
mg/l | A-1242
PCB
Tug/1 | A-1254
PCB
ug/1 | A-1260
PCB
ug/V | HCB
ug/T | -ncP
-eg/1 | HCBD
ug/ 1 | | PCP
ug/1 | 2,4,6,-
TCP
 | | |---
------------------------|-----------------------|-----------------------|--------------------------|------------------------|-----------------------|-----------------------|-------------|----------------|----------------------|----------------|-------------|--------------------|---| | 7-7-80 2230
7-8-80 0900
820193 (001) | · 0.05 | < 0.05
• 0.05 | 0.65
0.91 | | | | | | < 0.1
< 0.1 | | < 0.1 | Ţ | T < 0.1 | | | 7-7-80 2350
7-3-80 0945 | | 0.05 | 0.70
0.84 | | < 0.1 | < 0.1
< 0.1 | < 0.1
< 0.1 | | < 0.1 | | < 0.1 | < 0.1
T | < 0.1
< 0.1 | | | 820223 (005)
7-7-80 2400
7-8-80 1010 | < 0.005
• 0.005 | | 0.35
1.0 | | < 0.1
< 0.1 | < 0.1
< 0.1 | < 0.1
< 0.1 | | < 0.1 | | < 0.1
< 0.1 | Ť | 0.1 | | | 7-8-80 1000 | < 0.005
< 0.005 | ~ 0.05 | 0.50
0.76 | | | | | |
 | | | | | ÷ | | 820412 (North
7-7-80 2215
7-8-80 0845 | | 0.10 | 0.54
0.34 | | | | | | | | | | | · | | | Persistant Chlorinated | 1,2, Di Chlorinated | | Aliphatic | | Other | Other C1 + | |--------------|------------------------|---------------------|------------|-----------|-------|------------|------------| | | Hydrocarbons | Propane | Chloroform | amines | HCP | Cl-Phenols | Br VHC | | | ug/1 | 820190 (002) | | | | | - | • | • | | 7-7-80 2230 | Ü | 33 | 3 | | < 0.1 | U | U | | 7-8-80 0900 | U | 33 | 3 | | < 0.1 | Ŭ | Ŭ | | 820193 (003) | | | | | | • | · | | 7-7-80 2350 | υ | 13 | 4 | | < 0.1 | 11 | U | | 7-8-80 0945 | IJ | 10 | 5 | | < 0.1 | | ŭ | | 920223 (005) | _ | | | | ` 0.1 | U | v | | 7-7-80 2400 | t) | 6 | 4 | | < 0.1 | U | ., | | 7-8-80 1010 | ii | 7 | 8 | | | • | U | | 821088 (006) | J | • | • | | < 0.1 | U | U | | | | | | < 100 | | | | | | | | | | | | | | 7-8-80 1405 | | | | < 100 | | | | Table 3 Comparison of survey results with the facility's NPDES Permit and Monthly Operating Report. | Parameter (Unit) | | rmit Final
tations | Ju | aly Monthly | Operating F | leport | Survey Results ¹ | _ | |---------------------------------|-----------|-----------------------|----------|-------------|---------------|---------------|-----------------------------|-----| | | Daily | Daily | | | | | | | | | Average | Maximum | Average | Ma x i mum | <u>7-7-80</u> | <u>7-8-80</u> | | | | 820409 (Intake) | | | | | | | | | | Suspended solids (mg/l) | | | 70 | 115 | 60 | 52 | (16, 16) | | | Chlorides (mg/l) | | | 18 | 24 | | 16 | 13.5 | | | COD (mg/l) | | | 24 | 49 | 32 | | 9 (11, 10) | | | Total iron (mg/l) | | | 2.31 | 2.78 | | | 0.21 | | | 800s (mg/l) | | | 3 | 4 | | 1 | | | | 820224 (001) | | | | | | | | | | Flow (M ³ /day) | | | 24,000 | 27,000 | 22,000 | 22,000 | 21,500 | | | Suspended solids (mg/l) | | | 30 | 68 | | 13 | 14 (11, 25) | | | Ammonia nitrogen (mg/1) | | | 0.10 | 0.25 | 0.25 | | 0.23 (0.20, 0.26) | | | Chlorides (mg/l) | | | 17 | 19 | 18 | | (12.0, 12.5) | -12 | | COD (mg/1) | | | 12 | 17 | | 17 | 7 (8, 10) | • | | pH (S.U.) | not <6.5 | nor >9.5 | min. 7.7 | 8.1. | 7.8 | | (7.7, 7.7) | | | Residual chlorine (mg/l) | | | 0.0 | 0.0 | | 0.0 | (U, Ŭ) | | | Temperature (°C) | | | 18 | 30 | | 15 | (23.5, 24.0) | | | 820190 (002) | | | | | | | | | | Flow (M3/day) | | | 56,400 | 62,100 | 55,300 | 56,400 | 55,400 | | | Total suspended solids (kg/day) | 844 | 1,687 | 1,833 | 9,543 | 9,543 | 507 | 830 | | | Ammonia nitrogen (mg/1) | 1.4 | 2.3 | 0.12 | 0.75 | | | 0.24 (0.22, 0.30) | | | Chlorides (mg/l) | | | 30 | 52 | | 31 | 36. (40., 37) | | | COD (mg/1) | | | 22 | 71 | 71 | | 9 (7, 18) | | | Total lead (kg/day) | 0.6 | 1.25 | | 0.467 | | | | | | Residual chlorine (mg/l) | 1.0 | 1.5 | 0.13 | 0.82 | 0.30 | 0.00 | (T, 0.3) | | | Temperature (°C) | | | 34 | 37 | 33 | 33 | (33.5, 34.0) | | | pH (S.U.) | not -6.5 | nor :9 5 | J- | | High 10.2 | High 9.6 | (7.8, 8.0) | | | pn (3.u.) | 1100 -0.3 | 1101 23.3 | | | Low 7.0 | Low 7.4 | (7.0, 0.0) | | | | | | | | LUW /.U | EOM 114 | | | ¹ - Survey results are for the composite sample. Grab sample ranges are shown in parentheses (). T - Trace U - Undetected To obtain MGD multiply M3/day by 0.0003642 To obtain 165/day multiply kg/day by 2.205 Table 3 Comparison of . Levy results with the facility's MPDES Permit and Lathly Operating Report (continued). | Parameter (Unit) | RPDLS Per | mait Femal
ations | Ju | la Manthla | Onaratina C | ort | Survey Results | |-----------------------------|-----------|----------------------|----------|------------|---------------|----------|---| | Parametr (onic) | Daily | Daily | Monthly | Monthly | Air aithuil A | 7792 S | Julyey Results | | | Average | Maximon | Average | Max insum | 7-7-80 | 7-8-30 | | | 820193 (003) | WALLANC | 131 (31 (41) | 7. 12.25 | ini a mani | 171 | 1.22-27 | | | Flow (M3, day) | | | 23,700 | 25,000 | 23,000 | 23 000 | (23,200) | | Total susp. solids (kg/day) | 384 | 768 | 483 | 877 | 415 | 377 | 300 | | Armonia nitrogen (mg/1) | 3.,, | 5 | 0.08 | 0.88 | | 0.88 | 0.64 (0.61, 0.68) | | Total copper (mg/!) | | 1.0 | 0.016 | | | | < 0.02 (<0.02, <0.02) | | Total lead (kg/day) | 0.45 | 0.9 | 0.34 | 0.476 | | | 0.2 | | Total iron (may/1) | | 1.6 | 1.733 | | | | 0.78 (0.70, 0.34) | | Residual chlorine (mg/1) | 1.0 | 1.5 | 0.18 | 0.85 | 0.14 | 0.70 | (1.05, 1.10, 0.90) | | Chlorides (mg;1) | | | 146 | 167 | | 149 | 148 (140, 149) | | Temperature (°C) | | | 27 | 32 | 26 | 26 | (26.0, 26.5) | | pH (S.U.) | not <6.5 | nor -9 5 | | 10.0 | High 8.7 | High 8.5 | (7.7, 8.0) | | pii (3.0.) | 1100 (0.5 | 7.5 | | min. 6.4 | Low 7.9 | Low 7.1 | (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | 820223 (005) | | | | | 204 7.5 | LOW 7.1 | • | | Flow (M3/day) | | | 6,800 | 7,600 | 6,100 | 6,100 | 4,340 | | Total susp. solids (mg/l) | 35 | 70 | 30 | 358 | 7 | 10 | 27 (6, 19) | | Total susp. solids (kg/day) | 212 | 425 | 200. | 2,434 | 42 | 60 | 120 | | COD (kg/day) | | 821 | 59 | 221 | 130 | | Int. | | Ammonia nitrogen (mg/1) | 1.0 | 1.5 | 0.36 | 1.38 | | 0.62 | 0.18 (0.15, 0.24) | | Chlorides (mg/1) | | | 6,836 | 9,372 | | 7,480 | 7,500 (5,400, 8,500) | | Total lead (mg/l) | 0.1 | 0.2 | 0.008 | | | ., | < 0.005 (<0.005, <0.005) | | Total lead (kg/day) | 0.6 | 1.2 | 0.050 | | | | | | Temperature (°C) | | | 27 | 31 | 20 | 27 | (27.0, 30.0) | | Residual chlorine (mg/l) | 1.0 | 1.5 | 0.00 | 0.05 | 0.00 | 0.00 | (0, 0) | | pH (S.U.) | not <6.5 | | | 12.4 | High 8.8 | | (7.9, 8.0) | | En /arasi | | | | min. 2.7 | Low 7.8 | Low 7.5 | (1.10) = 10) | ^{1 -} Survey results are for the composite sample. Grab sample ranges are shown in parentheses (). Table 3 Comparison of survey results with the facility's NPDES Permit and Monthly Operating Report. (continued) 115.00 | Parameter (Unit) | | rmit Final
tations | Ju | ly Monthly | Operating R | eport | Survey Results ¹ | |-----------------------------|---------|-----------------------|---------|----------------|---------------|---------------|-----------------------------| | | Daily | Daily | Monthly | Monthly | | | | | | Average | Maximum | Average | Maximum | <u>7-7-80</u> | <u>7-8-80</u> | | | 821088 (006) | | | | | | | | | Flow (M3/day) | | | 26,000 | 33,000 | 33,000 | 32,000 | 32,500 | | BOD ₅ (kg/day) | 173 | 259 | 146 | 606 | | 95 | 490 | | COD (mg/1) | | | 13 | 36 | | 16 | 37 (45, 32) | | Total susp. solnet (kg/day) | 173 | 259 | 1,778 | 2, 270. | | 1,650 | | | Chlorides-net (kg/day) | | 4,000 | 260. | 722 | | 223 | 160 | | Ammonia nitrogen (mg/l) | 1.5 | 3.0 | 0.42 | 1.80 | 0.30 | | 0.46 (0.38, 0.55) | | Ammonia nitrogen (kg/day) | | 114 | 12.6 | 58.47 | 9.75 | | 15 | | Phenol (mg/l) | | 0.2 | 0.02 | 0.02 | | 0.02 | 0.009 (<0.005, 0.021) | | Phenol (kg/day) | | 4.5 | 0.508 | 0.671 | | 0.649 | 0.3 | | Sulfide (mg/l) | | | 0.0 | 0.0 | | | < 0.01 | | Total zinc (mg/l) | | 1.0 | 0.015 | 0.020 | | | < 0.05 | | Temperature (°C) | | | 26 | 28 | 26 | | (28.0, 29.0) | | Residual chlorine (mg/l) | | 0.5 | 0.01 | 0.10 | 0.00 | | (U, U) | | pH (S.U.) | not <6. | 5 nor >9.5 | | | High 8.6 | High 8.2 | (8.6, 8.7) | | , . , , | | | | min. 7.2 | Low 7.7 | Low 7.6 | (311) | | Total Combined Outfalls | | | | | | | | | Chlorides (kg/day) | | 227,000 | 44,800 | 63,900 | | 49,100 | 38,000 | ¹ - Survey results are for the composite sample. Grab sample ranges are shown in parentheses (). U - Undetected To obtain MGO multiply M 3 /day by 0.0002642 To obtain lbs/day multiply kg/day by 2.205 Int - Interference U - Undetected To obtain MGD multiply M³/day by 0.0002642 To obtain lbs/day multiply kg/day by 2.205 Table 4 Comparison of the laboratory analytical results obtained by Pennwalt Chemical Corporation - Wyandotte and the Environmental Protection Bureau from the split composite samples. | Cutfalls | 820224 | (001) | 820190 | (002) | |---|--|---|------------------------------------|-----------------------------------| | | Pennwalt
mg/l | E.P.B.
mg/1 | Pennwalt
mg/l | E.P.B.
mg/1 | | Sustended solids
Ameria mitrogen
Solorides
Lead (Po) | 16.0
0
1.0 | 14
0.23
7
 | 14.7
0
7.0
39.5
0.0030 | 15
0.24
9
36
9 < 0.05 | | ^utfalls | 820193 | (003) | 820223 | (005) | | | Pennwalt
mg/l | E.P.B.
mg/l | Pennwalt
mg/l | E.P.B. | | Suspended solids | 17.5 | 13 | 17.5 | 27 | | Commonia mitrogen-N
COU
Unlorid es
Dosper
Lead
Iron | | 0.64
148
03 < 0.02
5 0.009
0.78 | | 0.18
Interference
7,500
 | | | 821088 | (006) | 820412 | (Intake) | | | Pennwalt
mg/l | E.P.B. | Pennwalt
mg/l | E.P.B.
mg/1 | | 3.sherded solids | 3.5 | 8 | 8.7 | 6 | | Arrunia mitrogen-N
11:5
Clorides
Culture
col
con | 0.7
15.2
36.0
25.2
0
< 0.620
0.021 | 0.46
15
37
21
< 0.01
0.009
< 0.05 | 3.6
10.9
48.1

0.37 | 3.5
9
26

0.52 | $\frac{\text{Table 5}}{\text{model}} \hspace{0.2cm} \text{ Comparison of the
previous survey results with the results obtained in this survey.}$ | Outfalls | 820224 | (001) | 820190 | (002) | |---------------------------------|---------|--------|---------|--------------| | Survey Date From | 11-6-78 | 7-7-80 | 11-6-78 | 7-7-20 | | To | 11-7-78 | 7-8-80 | 11-7-78 | 7-8-80 | | Flow Rate (M ³ /day) | 19,000 | 21,500 | 42,500 | 55,400 | | | mg/l | mg/1 | mg/l | <u>179/1</u> | | Suspended solids | 25 | 14 | 14 | 15 | | Dissolved solids | 170 | 160 | 200 | 200 | | 5133014ed 301103 | 170 | .00 | •00 | 200 | | COD | 26 | 7 | 9 | 9 | | Phenol | < 0.01 | 0.007 | 0.03 | < 0.005 | | Nitrite & nitrate nitrogen-N | 0.35 | 0.36 | 0.32 | 0.32 | | Ammonia nitrogen-N | 0.39 | 0.23 | 0.32 | 0.24 | | Total phosphorus-P | 0.22 | 0.07 | 0.07 | 0.09 | | Chlorides | | | 30 | 36 | | Total lead (Pb) | | | < 0.005 | < 0.05 | | Total zinc (Zn) | | | 0.048 | < 0.05 | | Total iron (Fe) | 1.3 | 0.76 | 0.72 | 0.77 | | | | | | | . Pennwalt Chemical Corporation - Wyandotte | Table 5 (continued) | | | | | |---|--------------------------------|---------------------------------|--|-------------------------------------| | Cutfalls
Survey Cate From
To | 820193 (
11-6-78
11-7-78 | 7-7-80 | 820223
11-6-78
11-7-78 | 7-7-80 | | Ficw Rate (M3/day) | 22,400 | 23,200 | 4,700 | 4,340 | | | <u>mg/1</u> | <u>mg/1</u> | <u>mg/1</u> | <u>mg/1</u> | | Surmenced solids
Orosolved colids | 19
390 | 13
390 | 32
64, 000 | 27
16,000 | | C/3 | 14 | 11 | 20 | Interference | | 10 | < 0.01 | 0.007 | < 0.01 | < 0.005 | | Nothite & mitrate mitrogen-N
Propria mitrogen-N
Total prosphorus-P | 0.38
2.9
0.16 | 0.47
0.64
0.17 | 0.71
0.65
0.22 | 0.18 | | Chiorides | 1 36 | 148 | 32,000 | 7,500 | | Total chromium (Cr) Titel copper (Gu) Total nickel (Ni) Titel lead (Pb) Total zinc (Zn) Total iron (Fe) | 0.020 | < 0.02

0.009

0.78 | 0.000
0.000
< 0.000
< 0.000
0.01 | 3 0.03

5 < 0.005
5 < 0.05 | Pennwalt Chemical Corporation - Wyandotte | Table 5 (Continued) | | | | | |--|--------------------------------|---------------------------|--------------------------------|-----------------------------| | Outfalls
Survey Date From
To | 821088 (
11-6-78
11-7-78 | (006)
7-7-80
7-8-80 | 820412 (
11-6-78
11-7-78 | Intake)
7-7-80
7-8-80 | | Flow Rate (M ³ /day) | 29,000 | 32,500 | | | | | <u>mg/l</u> | <u>mg/1</u> | <u>mg/1</u> | <u>rg/1</u> | | Suspended solid:
Dissolved solids | 15
570 | 8
160 | 12
160 | 6
400 | | COD | 47 | 37 | 10 | 9 | | Phenol
Sulfide (S) | 0.15
0.05 | 0.009
< 0.01 | | | | 8005 | 33 | 15 | 4.3 | 3.5 | | Nitrite & nitrate nitrogen-N
Ammonia nitrogen-N
Total phosphorus-P | 0.33
0.65
0.10 | 0.34
0.46
0.08 | 0.28
0.39
0.07 | 0.30
0.27
0.08 | | Chlorides | 28 | 21 | 22 | 26 | | Total lead (Pb)
Total zinc (Zn)
Total iron (Fe) | < 0.005
0.040
9.2 | < 0.005
< 0.05
0.57 | 0.009
0.31 | < 0.05
0.52 | #### Process Flow Diagram Table 6 Sample Preservation | Parameter | Preservative | |-----------------------------------|--| | ClD/TCC/prenol (Chlorine absent) | 10 drops conc. H ₂ SO ₄ /250 ml (to pH <2). | | Frenols (Chlorine present) | Dechlorinated w/ferrous ammonium sulfate (0.141 H) 1 drop/mg/1 Cl ₂ /250 ml. H ₂ SO ₄ to pH <2. | | Total Metals | 2 ml 1:1 HNO ₃ /250 ml (to pH <2). | | USD & Grease | 10 drops conc. H ₂ SO ₄ /250 ml (to pH <2). | | Sulfides | 10 drops 1M ZnAc/250 ml. | | & base-neutral extractables | Dechlorinated (if needed) with sodium thiosulfate (1 drop 0.141 N/mg/l Cl ₂ /250 ml). | | All samples cooled to 4°C and pre | served upon collection and chain of custody | Survey by: Gary Boersen, Environmental Engineer Elizabeth Browne, Water Quality Technician William Erickson, Water Quality Technician Guntis Kalejs, Water Quality Technician Bruce Walker, Water Quality Technician Contact with Management: John Lewis, Supervisor of Environmental Control & Certified Operator Tom Overgaard, Senior Chemist - East Plant Chuck Talcot, Lab Supervisor - West Plant Hydrocarbon Analyses by: Environmental Protection Bureau Laboratory Physical, Chemical & Eacterialogical Analyses by: Environmental Protection Bureau Laboratory > Report by: Gary Boersen William Erickson Point Source Studies Section **Environmental Services Division** Environmental Protection Bureau Michigan Dept. of Natural Resources Distribution "A" | | 33 1 A | ampling Dates ctivity C | :5 T - 7 | | | 1.6-11-24- | Stu | WN N T C | te / Day M | |----------------|------------------|-------------------------------|---------------------|---------------------------------------|---------|------------|--------|------------------|------------| | 1 6 1 0 2 A | 00610 | 582 | 00605 | () - 3./ | 00000 | 00340 | 00680 | 71900 | 7 | | mple Nitrate + | Assionia
as N | Total
Kjeldahl
Nitrogen | Organic
Nitrogen | Total P | Dis. P. | CCD | тос | Total
Mercury | - | | nits . mg/1 | img/1 | nig/l | n:g/l | ing/1 | mg/1 | mg/1 | mg/1 | µ9/1 | | | SOLV | 0.31 | · | | | | 162 | | | | | dalak | 0.28 | | | · · · · · · · · · · · · · · · · · · · | : | 48 | | | | | 50174 | 3.06 | | | _ | | 947 | | | | | 5/34 | 0.42 | | | - | | 41 | | | - | | 5/12 | 0.32 | | | | | 30 | | | - | | 0/24 | a 33 | | | | | 26 | | | | | | | | | | L | - | | | | | | | | 7212 | 0.65 | | | - | · / | 3 | | • | - | | 23 3 - | 12/21/20 | | | | L | 12-450 | | | - | | | | • | | | | 1 4 | 7 7 7 | | | | | | | | | | ORI | 9/8/ | | | | Coole 4- | 4 . Jan. 1 | les etvi | of receive | ing 200 | on 1629 | reging | estor. | | | | | | | • | | | | / | | | | | - | | - | | | | | | | | | | | | | | | | | | ## U.S. ENVIRONMENTAL PROTECTION AGENCY EASTERN DISTRICT OFFICE FIELD SAMPLING SURVEY PROPOSAL FACILITY NAME Penawult Corp LOCATION RIVERVIEW _____ SURVEY DATE 11/3/80 NPDES NO. MI 000 2 381 SURVEY NO. FIELD DISTRICT LAB CENTRAL REGIONAL LAB COND. BOD TOT SOLIDS DIS. SOLIDS SUSP. SOLIDS HEX. CHORME TEMP. PH D. O. COND. CHLORINE FLOW Sample Point Sample Sample Number | Point Description SIELOZ 10 Preservative Code 07 (08) 501 OUI Notin SS SOZ 002 Aimys & Bio #3 503 003 Almes & Bio #2 1005 504 2 6 006 505 Almes & 1310 al SOG INF 507 Influent To pend #1 2/2 508 1111 # 1 z l 509 "Ponda 4 2 2 510 Monguagen Greek sludge Б// Division/Branch / A The Asset Day Month Year Day Month Year PSPWNNNALT - C B 303 Activity Con - 7" D.U. Number 1 582 RAK-11 2: 70 12-1-80AS 810103 00075 00530 70300 00095 00945 00940 00956 00410 Parameter Ko. Sulfate Chloride Total Silica Alkalinity Cat Sample Turbidity Sus.Solids Dissolved Specific (105°C) Solids (180°C) as Sino. as CaCO2 Log Mumber Conductance Formazin umhos/cm Units ag/1 mg/1 mg/1 mq/1 mg/1Turb. Units at 25° mg/150 23 130 5600 15 14 12 10 11 13 4 ke 12 11/26/80 13 14 15 16 17 1029 recigerator 19 19 20 | .ion/Branch | EAST | FFRA S | ampling Da | 1te4-5 N | JN 1880 | Lab Arri | val Date | 20 | 11 80 | Analysis . | Due Date / | 15/8 | |--|-------------------|------------------|------------------|------------------|--------------------|-----------------|-----------------|---------------|---------------|--------------------|------------|---------------------| | . Numbor | B 3 | <u>03</u> A | ctivity " | C J / - | 7 | , , | ,
 | | | Study E | Manurar | M.C.C. | | 1EL02 | | 101 58 | | | | | 80 AT | | 11-24-80 | | CX 12/1: | 180 | | motor lis. | 01105 | 01003 | 01007 | 01027 | 01034 | 01037 | 01042 | 01045 | 01051 | 01055 | | ·
- | | RL Sample
og Number | Total
Aluminum | Total
Arsenic | Total.
Barium | Total
Cadmium | Total
Chronitum | Total
Cobalt | Total
Copper | Total
Iron | Total
Lead | Total
Manganese | PLASMA | HE | | Units | μg/1 | µg/1 | 1/01 | µg/1 | J19/1 | µ9/1 | hā/3 | jig/1 | ו/פון | µg/1 | | 19/g | | 501 | | | | | | - | | | | | y. | Ko.1 | | 504 | | | | - | | - | - | _ | | - | 1 | Ko. 1 | | | | | - | | | - | | - | - - | | 4 | 10.4 | | 15/0 | | | - | <u> -</u> | | | | | | | | ke | | 5/3 | | | · - | | | | 3 | | | | | 12/8/8 | | -500 | | | - | - | | - - | · L | | <u> </u> | 1 | | | | 0/9 | | | | | | | v | 1 | | L | | | | - 22- | | | | | | | | | | | | | | 033 | | | | | | | | | | 4 | | | | | | · | | - | | | | | | | | | | 525 | | | | | | | | | | | | | | - Time 127 | | | | ·
 | | | | | · | | | <u> </u> | | | | | | | | | | | · | | | | | 1- | | | | | | - | - | | | | | | | ┤┼┼┼┼ | | | | | | - | | - | | | | | | | | | a | | | | | | | - | | | | | Coole 7- | Sterry | les de | ed rec | eining | 2000 | 1029 | Rein | eaco. | | • | | | | | | - | · | | - | | | | | | | | \ \ \\ | | | | | | - | - | | - | | | | | | | <u> </u> | | | | <u> L</u> | L | 1 | | | | <u> </u> | PENNWALT AGENCY, REGION V, CRL ENVIRONMENTAL PROTECTION EDO DATA S ET NO. 582 Jun 15 De. 80 | C | | | | | | | | | | | | |--------------------|------------------------------------|--------------------------|----------------------|---------------------|---------------------|----------------------|----------------------|----------------------|----------------------|---------------------|---------------------| | C | PARAMETER #
SAMPLE ID.
UNITS | 00916
CA
MG/L | 00927
mg
mg/l | 00929
NA
MG/L | 01077
AG
UG/L | 01105
AL
UG/L | 01022
8
UG/L | 01007
BA
UG/L | 01012
BE
UG/L | 01027
CD
UG/L | 01037
CO
UG/L | | | ======== | ====== | *===== | 22222 | 2222 | 2222 | 2222 | 2222 | ==== | ==== | ==== | | C | EL02501
4
7 |
28.3
27.6
27.5 | 7.3
7.2
7.4 | 6.7
18.6
71.5 | K 3
K 3
K 3 | 115
192
221 | N.A.
N.A.
N.A. | 17
18
18 | K 1
K 1
K 1 | K 2
K 2 | K 5
K 5
K 5 | | C | 13
16 | 27.5
27.4 | 7.0
7.2 | 8 • 1
7 • 1 | K 3
K 3 | 94
118 | N.A. | 16
16 | K 1
K 1 | K 2 | K 5
K 5 | | \circ | D19 | 28.3 | 7.4 | 6.7 | K 3 | 148 | N.A. | 17 | K i | K 2 | K 5 | | | 29 | 27.4 | 7.1 | 8.1 | к з | 148 | N.A. | 17 | K 1 | K 2 | K 5 | | C | | | | | | | | | | | | | O | PARAMETER #
Sample ID.
Units | 01034
Cr
UG/L | 01042
CU
UG/L | 01045
FE
UG/L | 01055
MN
UG/L | 01062
MD
UG/L | 01067
NI
UG/L | 01051
PB
UG/L | 01102
SN
UG/L | 01152
TI
UG/L | 01087
V
UG/L | | | =======
EL02501 | ####
- | ==== | *** | === | ==== | 2222 | ==== | ==== | 2225 | ==== | | 0 | 2 | K 5
K 5
K 5 | K 6
K 6
K 6 | 400
648
883 | 9
13
23 | K 10
K 10
K 10 | K 30
K 30
K 30 | K 30
K 30
K 30 | N.A.
N.A.
N.A. | 7
10
10 | K 5
K 5
K 5 | |) | 13
16 | K 5
K 5 | K 6
K 6 | 495
368 | 9
15 | K 10
K 10 | K 30
K 30 | K 30
K 30 | N.A.
N.A. | 9
13 | K 5
K 5 | | $\dot{\mathbf{C}}$ | D 19 | K 5 | K 6 | 418 | 11 | K 10 | K 30 | K 30 | N.A. | 8 | K 5 | | | 29 | K 5 | К 6 | 605 | 16 | K 10 | K 30 | K 30 | N.A. | 8 | K 5 | | - | PARAMETER # | 01203 | 01092 | | | | | | | | | | J | SAMPLE ID.
UNITS | Y
UG/L
==== | ZN
UG/L
. ==== | 12
UG/L | | | | | | | | | | EL02501 | K 5 | K 50 | N.A. | | | | | | | | | | 4
7 | K 5
K 5 | K 50
K 50 | N.A.
N.A. | | | | / | | | | | _ | 13
16 | K 5
K 5 | K 50
K 50 | N.A.
N.A. | | | | | | | | | J | D19 | К 5 | K 50 | N.A. | | | | | | | | | | 29 | К 5 | k 50 | N.A. | | | | | | | | 12/15/86 613 ENVIRONMENTAL PROTECTION AGENCY, REGION V, CRL 01027 ÇD UG/L ==== K 20 01152 TI UG/L 2222 K 60 01037 CO UG/L 3312 K 50 01087 V UG/L ==== K '50 ET NO. 582 EDO DATA S | C = C | PARAMETER # SAMPLE ID. UNITS ======== ELO2S1U | 00916
CA
MG/L
======
K <i>SP</i> | 00927
MG
MG/L
======
K1.0 | 00929
NA
MG/L
#######
3790 | 01077
AG
UG/L
====
K 30 | 01105
AL
UG/L
====
K900 | 01022
B
UG/L
====
N.A. | 01007
8A
UG/L
====
K 50 | 01012
BE
UG/L
====
K 10 | |-------|--|--|---------------------------------------|--|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------| | 0 | PARAMETER # SAMPLE ID. UNITS ======== ELO2S 10 | 01034
CR
UG/L
====
K 50 | 01042
CU
UG/L
REES
N 60 | 01045
FE
·UG/L
====
K 1200 | 01055
MN
UG/L
====
K 50 | 01062
M0
UG/L
====
K100 | 01067
NI
UG/L
====
K300 | 01051
PB
UG/L
=====
K300 | 01102
SN
UG/L
====
N.A. | | 0 | PARAMETER # SAMPLE ID. UNITS ========= EL02510 | 01203
Y
UG/L
====
K 50 | 01092
ZN
UG/L
====
K500 | 12
UG/L
====
N.A. | | | | | | • 0 O - J ENVIRONMENTAL PROTECTION AGENCY, REGION V, CRL SLUDGE EDO DATA 12-12-80 SET NO. 582' | 5 | | | | | | | | | | | | |----------|--|------------------------------------|-------------------------------------|--------------------------------------|------------------------------------|-----------------------------------|------------------------------------|------------------------------------|-------------------------------------|--------------------------------------|----------------------------------| | <u> </u> | PARAMETER # SAMPLE ID. UNITS | 00916
CA
MG/G | 00927
MG
MG/G | 00929
NA
MG/G | 01077
AG
UG/G
==== | 01105
AL
UG/G
==== | 01022
B
UG/G
==== | 01007
BA
UG/G | 01012
BE
UG/G | 01027
CD
UG/G | 01037
CO
UG/G | | • | EL02532 | 120.0 | 17.6 | K1.2 | 7 | 13000 | N.A. | 170 | 5 | 9 | 11 | | 0 | PARAMETER # SAMPLE ID. UNITS ======== ELOZS 32 | 01034
CR
UG/G
====
230 | 01042
CU
UG/G
====
140 | 01045
FE
UG/G
====
35000 | 01055
MN
UG/G
====
780 | 01062
MO
UG/G
====
37 | 01067
NI
UG/G
====
140 | 01051
PB
UG/G
====
540 | 01102
SN
UG/G
====
N.A. | 01152 ·
TI
UG/G
====
210 | 01087
V
UG/G
====
44 | | · · | PARAMETER # SAMPLE ID. UNITS ======== ELOZS32 | 50
CC/C
====
01503 | 01092
ZN
UG/G
====
2700 | 12
UG/G
====
N.A. | | | | | | | | Day Month Year PSPWNWALT - CO D.U. Number 1 B SOI Activity Con The RAK 11 3 5 70 1 582 81ELOAD 12-1-80AS 00095 00940 00076 00530 70300 00945 00956 00410 Parameter Ka. Dissolved Solids (180°C) Alkalinity CRL Sample Sus.Solids Specific Sulfate Chloride Total Silica Turbidity as Sino Log Mumber Conductance as Cacoa (105°C) Formazin umhos/cm Units rig/1 at 25° Turb. Units mg/1 nig/1 mg/1mg/1mg/150 11 23 507 13 D \$ 5600 15 į 14 12 3 10 11 13 529 ke 17 11/26/80 13 14 15 18 17 1029 recignator dimente stored received room 13 19 20 | sion/Branch | EAST | FERM S | iampling Da | .tc4-5 NS | 0 1/ 1980 | Lab Arri | val Date | 20 1 | 1 80 | Analysis .[| Due Date / | 7.5./X | |--------------------------|-------------------|------------------|-----------------|------------------|----------------------|-----------------|-----------------|---------------|---------------|--------------------|------------|----------------------| | Number | B. 3 | 03 / | Activity | Day Moi | nth real | , . | · | | | Study 10 | MMHETT | | | 1EL02 | 2. Day | 101 58 | 82 | | | | 80 AT | | 1-24-80 | 2 | CK 12/13 | 180 | | uneler lie. | 01105 | 01002 - | 01007 | 01027 | 01034 | 01037 | 01042 | 01045 | 01051 | 01055 | | ·
- | | IRL Sample
Log Humber | Total
Aluminum | Total
Arsenic | Total
Barium | Total
Cadmium | Total
Chromium | Total
Cobalt | Total
Copper | Total
Iron | Total
Lead | Total
Manganese | PLASMA | H | | Units | μ 9/1 | 1/64 | у9/1 | pg/1 | րց/1 | ו/פע | pg/1 | jig/1 | 119/1 | µ9/1 | | 18/ | | 301 | | | | · | | | | | | | 1 | Ko. | | 509 | | | | | | | - | | | | | Ko. | | 1 37 | | | | | | | | | | <u> '</u> | - | 40.4 | | 1-5/01- | | | | | | - - | | | - | | | ke | | 1-513 | | | | | | | J 3 | | - | L | | 12/8/ | | - 500 | | | - | - | - | - - | 1 | | · · | L | | | | 7/2 | | | | - | | | <u> </u> | | | | | | | - - | | | - | | - | | | | | | | - | | | | | | · | | - | | | - | 4 | - | | | | | | - | | | | · | | - | | | | | 525 | | | | | | | | - | - | | · | | | 1-1-1- | | | - | | | | | | - | | | - | | +++++ | | | | | | | | | - | · | | - | | ╁╇╂┼┼ | | | | | - | - | - | | | | | | | +++++ | | | | | | | | - | | | | | | | | | | | | | - | | | - | | | | +++++ | Code 7 | 8 sang | les sto | ed rec | eving | room | 1029 | Main | eato. | | • | | | | | | | | | - | | | | | | | | +++++ | | | - | | | <u> </u> | | | | | - | | | | | | | | | | | | | | | | | Figure 1 | E AS | TEAM S | Sampling Date | V-5 NOV 15 | N AGENCI | rrival Date | 70 11 | ۸n و ۱۰۰۰ م | alvsis Due Da | ite / 15/ | |------------------|---------------------------|-----------------|-------------------------------|---------------------|--|-------------|-----------|-------------|------------------|-----------| | . Nunyo | | 7 x 4 / | ampling Date | Day Month Y | car | | Day Month | Year
Sti | iciv | Day Month | | . [| 02 |) | 582 | • | ()-3/ | | | | PEN-NW | All Torto | | rior ho | 00630 | 00610 | 00625 | 00605 | . 00065 | noscs | 00340 | 00680 | 71900 | | | Sample
Number | Nitrate +
Nitrite As N | Andonia
as N | Total
Kjeldahl
Nitrogen | Organic
Nitrogen | Total P | Dis. P. | cco | тос . | Total
Mercury | | | Units | mg/1 | mg/1 | mg/1 | n:9/1 | . mg/1 | mg/1 | m2/1 | mg/1 | µg/1 | | | 500 | | 0.31 | | | | | 162 | | | | | 5-13 | <u> </u> | 0.28 | | | | | 48 | | | | | 507 | | 3.06 | | | | | 50 | | | | | 5/01 | | 0.42 | | | - | | 947 | | | | | 5/3 | | 0.49 | | | <u> </u> | | 41 | | | | | 5/2 | | 0.32 | | | | | 30 | | | | | 2/2 | | a 33 | | | | - | 26 | | | | | 200 | | | | | | | | | : | | | -13-5 | | | | - | | | | | | | | 10 10 1 | | | | | | <u> </u> | | | | | | 51.12 | | 0.65 | | _ | | | 19 | | | | | 133 × | | K0.03 | | | | L | 3 | | | | | | - | 12/21/20 | | | | | 12-450 | | | | | | | | | | | | 0 | 111 | | | | | | | | | | | OR 1 | 9/8/ | | | | | Coole 4- | 9 done | les atori | of recent | ing rece | -ne 1629 | refined | estor. | | | | | | | | | 0 | | | 1 | , | - - - - | | | | | , | | | | | | PENNWALT ENVIRONMENTAL PROTECTION AGENCY, REGION V, CRL EDO DATA S 12-12-80 UG/L ==== K Š K 5 UNITS 4 13 16 D19 29 EL02501 UG/L 2222 K 50 UG/L HEER N.A. N.A. N.A. N.A. N.A. N.A. N.A. 9 0 ET NO. 582 Jun 15 Dec80 | 0 | | | | | • | | | | • | | | |---------|------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|--------------------|---------------------|---------------------|---------------------|---------------------------------------| | C | PARAMETER #
SAMPLE ID.
UNITS | 00916
CA
MG/L | 00927
MG
MG/L | 00929
NA
MG/L | 01077
AG
UG/L | 01105
AL
UG/L | 01022
B
UG/L | 01007
BA
UG/L | 01012
BE
UG/L | 01027
CD
UG/L | 01037
CO
UG/L | | | ========= | 222222 | *====== | 222222 | ==== | ==== | ==== | ==== | 2222 | EEZI | ==== | | O | EL 02501 | 28.3
27.6 | 7.3
7.2 | 6.7
18.6 | K 3
K 3 | 115
192 | N.A. | 17
18 | K 1
K 1 | K 2
 K 5
K 5 | | | 7 | 27.5 | 7.4 | 71.5 | K 3 | 221 | N.A. | 18 | K 1 | K 2 | K 5 | | Ç | 13 | 27.5 | 7.0 | 8.1 | к 3 | 94 | N.A. | . 16 | K 1 | К 2 | K 5
K 5
K 5 | | | 16 | 27.4 | 7.2 | 7.1 | к з | 118 | N.A. | 16 | K 1 | K 2 | K 5 | | \circ | D19 | 28.3 | 7.4 | 6.7 | к 3 | 148 | N.A. | 17 | к 1 | K 2 | K 5 | | | 29 | 27.4 | 7.1 | 8.1 | к з | 148 | N.A. | 17 | K 1 | K 2 | K 5 | | C | • | | | | | • .• | | • • | • | | | | | PARAMETER # | 01034 | 01042 | 01045 | 01055 | 01062 | 01067 | 01051 | 01102 | 01152 | 01087 | | | SAMPLE ID. | CR | ČŪ | FE | MN | MO | NI | PB | SN | TI | 01007
V | | 0 | UNITS | UG/L | UĞZL | UG/L | UG/L | UG/L | UGZL | UGZL | UG/L | UG/L | UG/L | | | 22222222 | 252 | ==== | 2222 | ==== | 2222 | 2222 | | | 222 | | | | EL02501 | K 5 | K 6 | 400 | | | | **** | ##=# | 222 | 2222 | | 0 | Crox301 | | | | 17 | K 10 | K 30 | K 30 | N.A. | | K 5 | | _ | 4 | • | K 6
K 6 | 648 | 13 | K 10 | K 30 | K 30 | N.A. | 10 | K 5 | | | , | K 5 | r 0 | 883 | 23 | K 10 | K 30 | K 30 | N.A. | 10 | K 5 | | 0 | 13 | К 5 | К 6 | 495 | 9 | K 10 | V 70 | v 70 | | • | v e | | | 16 | K 5 | K 6 | 368 | 15 | | K 30 | K 30 | N.A. | 9 | , , , , , , , , , , , , , , , , , , , | | | | K 5 | K 6 | 418 | 11 | K 10 | K 30 | K 30 | N.A. | 13 | K 5
K 5
K 5 | | Ü | D 19 | , , | ^ 0 | 410 | A 1 | K 10 | K 30 | K 30 | N.A. | 8 | K 5 | | | 29 | K 5 | K 6 | 605 | 16 | K 10 | K 30 | K 30 | N.A. | 8 | K 5 | | U | | | | | | | | | | | | | - | PARAMETER # | 01203 | 01092 | | | | | | | | | | L. | SAMPLE ID. | Υ | ZN | 12 | | | | | | | | 12/15/80 000 ENVIRONMENTAL PROTECTION 4. 0 0 \bigcirc AGENCY, REGION V, CRL ET NO. 582 : 12-12-80 EDO DATA S | S | | | | | | | | | • | | | |-----------|------------------------------------|-------------------------------|---------------------|-------------------------------|-----------------------------|-----------------------------|----------------------------|-----------------------------|-----------------------------|-----------------------------|---------------------| | 1 | PARAMETER #
SAMPLE ID.
UNITS | 00916
CA
mg/L
====== | 00927
MG
MG/L | 00929
NA
MG/L
====== | 01077
AG
UG/L
==== | 01105
AL
UG/L
==== | 01022
B
UG/L
==== | 01007
BA
UG/L
==== | 01012
BE
UG/L
==== | 01027
CD
UG/L
==== | 01037
CO
UG/L | | 0 | EL0251U | K 50 | K1.0 | 3790 | к 30 | K900 | N.A. | K 50 | K 10 | K 20 | K 50 | | | | | | | | - | | | | | | | \Box | PARAMETER #
Sample ID. | 01034
CR | 01042
CU | 01045
FE | 01055
MN | 01062
MO | 01067
NI | 01051
PB | 01102
SN | 01152
TI | 01087 | | | UNITS | UG/L | UG/L | ·UG/L | UG/L | UG/L | UĞZL | UG/L | UG/L | UGŻL | UG/L | | O | ========
EL025 10 | ====
K 50 | ==== | ==≈=
K 1200 | ====
K 50 | ==== | E=== | ==== | ==== | 2=2= | #22I | | | EF972 IO | V 20 | K 60 | KIZO | K 20 | K100 | K300 | K300 | N.A. | K 60 | K '50 | | \odot | PARAMETER # | 01203 | 01092 | | | | | | | | | | | SAMPLE 1D. | Y Y | ZN | 12 | | | | | | | | | 0 | UNITS | UG/L | UG/L | UG/L | | | | | | | | | () | 200000000 | ==== | ==== | 2222 | | | | | | | | | | ELOZS10 | K 50 | K500 | N.A. | | | | | | | | ENVIRONMENTAL PROTECTION AGENCY, REGION V, CRL BLUDGE EDO DATA 12-12-80 SET NO. 582' | PARAMETER # SAMPLE ID. UNITS ==================================== | 00916
CA
MG/G
======
120.0 | 00927
MG
MG/G
=======
17.8 | 00929
NA
MG/G
======
K1.2 | 01077
AG
UG/G
====
7 | 01105
AL
UG/G
====
13000 | 01022
B
UG/G
====
N.A. | 01007
BA
UG/G
====
170 | 01012
BE
UG/G
====
2 | 01027
CD
UG/G
==== | 01037
CO
UG/G
====
11 | |---|--|--|---------------------------------------|------------------------------------|--------------------------------------|------------------------------------|------------------------------------|-------------------------------------|-------------------------------------|-----------------------------------| | PARAMETER # SAMPLE ID. UNITS :======== ELO2532 | 01034
CR
UG/G
====
230 | 01042
CU
UG/G
====
140 | 01045
FE
UG/G
====
35000 | 01055
MN
UG/G
====
780 | 01062
M0
UG/G
====
37 | 01067
NI
UG/G
====
140 | 01051
PB
UG/G
====
540 | 01102
SN
UG/G
EEEE
N.A. | 01152'
TI
UG/G
====
210 | 01087
V
UG/G
====
44 | | PARAMETER # SAMPLE ID. UNITS ELLESTEE ELOZS32 | 01203
Y
UG/G
====
20 | 01092
ZN
UG/G
====
2700 | 12
UG/G
====
N.A. | | | | | | | | | OURCE OF SAME | | ā STP | (ELOI), | PENN | JACT (| ELOZ) | | SAMPLE DATE | | |---------------|------------|---------------|-----------------|-----------------|-------------|-----------------|------------|-----------------|-------------| | MATHES BA | | | DATE | | CHECKED BY | 714 | 8 | DATE | 1.0 | | | | | | | | S. S. | Leur | 11/14 | <u>/ සා</u> | | MODO Nos. | NCITATE | COND
Q25°C | TOTAL
SOLIDS | 345P.
336123 | Ī | TOTAL
PHENOC | TOTAL | 014 d
GRE45E | | | عود ۱۹۸۸ | 77.2 | remhos | myle | mg 18 | mg 1.0 | 218 | mg 12 | Men | | | 501 | INF | 986 | 4153 | ,3472 | 626 | 0.056 | 4.005 | | | | 504 | INF | _ | I - C | (3576) | | _ | | 66 | | | 508 | Ett | 792 | 538 | 21 | 16 | 0.007 | 0.096 | | | | 5// | EFF | | | | | | (0.092) | <1 | | | S 23 | Stuger | | | | | 0.026 | 4.005 | _ | | | | | | | | | | | | | | > | | COND | SHEEIDE | 3459 | Bads | PHENSE | | G43 | 374 | | • | WALT | under | mois | 344103 | الرم | 19 gm | 54mp# | a jam | | | 501 | 001 | 232 | | 8 | | | So2 | 21 | <i>ව</i> ට | | - · d | | | · | | | | 503 | 3 | 00 | | 504 | 002 | 276 | | /1 | - | | 505 | <u> </u> | 00 | | e \ ? | | | | | <u>-</u> | | 306 | <1 | 00 | | 507 | 003 | 629 | - | 5 | | <u> </u> | 208 | 2 | 00 | | 5 10 | 005 | 21/ | | < 5 | | | 509
511 | | 00 | | | 003 | 21,608 | + | | | | 512 | <1 | 00 | | 3/3 | 006 | 741 | (514) <.02 | 10 | 9 | 0.011 | 314 | <1 | 00 | | | 00 0 | 674 | (315) < .02 | | | 0,011 | 315 | <1 | 00 | | 516 | INF | 232 | 7.52 | 6 | 3 | 4,002 | 5/7 | <1 | 14 | | | | | · | | | 13. 44.2 | 5/8 | <1 | 12 | | D19 | JNF | 232 | | 8 | <2 | <.00Z | | | | | 529 | INF to | 2 47 | (330) < .02 | 7 | | 0.039 | i
i | | | | | POUDE 4 | | (331) <.02 | | | 0.037 | | | | | \$20 | 1 | i | 1.00 | (10) | | 0.620 | <u> </u> | | | | | INE TO # 1 | - | <u> </u> | | | | | | | | _3 2 6 | | | | | | <.002 | | | | | | | | . | | ļ · · · · | | | | | | | | | .} | | | | | | | | | | | | | | :
 | | | | | | | | ļ | | | ~ | | | | | | <u> </u> | | | | | | | | | | | | - · · | | :
 | | | | | | | DECIA DE | MADKE, C | \ | ac vace | | | | D | | | ll-Please transmit MICHIGAN DEPARTMENT OF NATURAL RESOURCES ENVIRONMENTAL PROTECTION BUREAU POINT SOURCE STUDIES SECTION Report of an On-site Toxicity Evaluation Conducted at PENNWALT CORPORATION All Outfalls No. 820298 Wayne County Wyandotte, Michigan July 7-11, 1980 ### Surrary During July 7-11, 1980, an on-site toxicity evaluation was conducted on the process effluent from outfall 820223 (005) at Pennwalt Corporation, Wyandotte. Fatread minnows (<u>Pimephales promelas</u>) with a mean length of 45 mm served as the test species in the two continuous-flow tests. In Test A the effluent was tested without additional treatment. In Test B, sulfur dioxide gas was first added to the efficient to remove chlorine and then tested. In both tests the effluent was acutely toxic. The 96-hour LC50 for Test A was estimated at 57% effluent with approximate 95% confidence limits of 50% and 66%. In Test B the estimated 96-hour LC50 was 61% effluent with approximate 95% confidence limits of 50% and 75%. The difference in LC50's was due to the test design rather than the presence of chlorine. The measured chloride concentration ranged from 5,400 m/9,700 mg/l and was the most probable cause of effluent toxicity. . Outfall 220223 (005) discharges directly to the Trenton Channel of the Detroit River. The seven-day, once in 10-year low flow (7010) for the Detroit River is approximately 231,000,000 M³/day. At the observed average flow rate of 6,100 M³/day, effluent from 820223 (005) would constitute 0.05% of the river volume allowed as a mixing zone during the 7010. At that concentration, the effluent would meet the recommended long term safe concentrations and would not be harm-table. Side at the edge of Pennwale's mixing zone and beyond. Effluent samples collected during the 96-hour study were compared to the limitations set down in Pennwalt's NPDES Permit No. MIOOO2381 and Final Order No. 1981. Based on those comparisons, the limitations were met during July 7-11, 1980. Direct comparisons with past toxicity data collected for outfall 820223 (005) are difficult to make due to differences in test methods and species. However it appears that the effluent toxicity has decreased, probably as a result of production thanges and improved pH control. ### Corrents Penrwalt Corporation has seven outfalls to the Trenton Channel of the Detroit River. Of these only 820223 (005) was evaluated and will be discussed in this report. Information on the other discharges can be found in the 1930 industrial survey report by Boersen and Erickson. The industrial survey and toxicity evaluation were conducted concurrently. A portion of the process effluent was treated with SO2 to remove colorine which is occasionally present in the effluent. Chlorine is a known toxicant. Running simultaneous studies with and without dechlorination simplifies the identification of other toxicants which may be present in addition to chlorine. Effluent COD's could not be determined. Chlorides in excess of 2,000 mg/l interfere with the test
procedure making the analysis inaccurate or intossible to complete (APHA, 1975). #### Plant Processes Pennwalt's inorganics plant produces chlorine, caustic soda, remic chloride, ammonium chloride and muriatic acid from salt brine, scrap from, ammonis and other raw materials. A process schematic is depicted in Figure 1. During the study period, production was considered normal. The inorganics plant operates 24 hours/day, seven days/week and employs 300 people, and production was considered normal. The inorganics plant operates 24 hours/day, seven days/week and employs 300 people, and production was considered normal. #### Water Supply, Wastewater & Treatment The process and cooling waters used in the operations which discharge to outfall 820223 (005) are obtained from the company's south intake (8.0000) on the Trenton Channel (Figure 2). Intake water receives coarse screening and is periodically chlorinated. Domestic water is supplied by the City of Tetroit.* Seal water from the liquid ferric pumps, chlorine cell room drains, wash water from the evaporators, wash water from the tank room and back wash from two of the filters used to filter caustic are discharged via outfall \$20223 (GC5). The wash waters from the evaporator department and the caustic filters are the main sources of the chlorides and sulfates found in the effluent. The combined waste streams are provided settling in one of two settling lagoons. Following continuous pH adjustment with carbon dioxide, sulfuric acid or caustic, the wastewater is monitored and enters a Wayne County Drain prior to entering the Detroit River. The lagoon which is not being used for settling is dredged and the solids disposed of by deep well injection. Clarifier underflow from the brine purification process serves as an injection flux. Any wastewater generated from the replacement of the asbestos diaphragms in the chlorine cell room is also pumped to the inactive lagoon. Sanitary wastes are discharged to the city sanitary sewer system. ## Test Procedures An Environmental Protection Bureau (E.P.B.) mobile bioassay unit was used to conduct the two on-site continuous-flow tests during July 7-11, 1980. Effluent 0 from cutfall 820223 (005) and Detroit River water from 200 feet upstream of 800223 (005) were combined to create the various test concentrations. Both streams were passed through a heat exchanger to minimize temperature differences. The river water (diluent) was filtered through one mm mesh screening just prior to use in the diluter systems. In Test A the final effluent was pumped directly from the outfall to the delivery system and was identical to wastewaters actually reaching the Detroit Figs. A Riley-Nuerthele proportional diluter delivered nominal concentrations of 110, 85, 75, 66, 50, 33, 25, 12 and 0 (diluent control) percent effluent to the five liter test tanks. Each tank contained approximately five liters of test solution. Ninety-nine percent volume replacement occurred every two hours. In Test 8 sulfur dioxide gas (SO₂) was added to the effluent to remove any chlorine that might have been present. A Riley-Nuerthele diluter delivered nominal concentrations of 100, 75, 50, 25, 12 and 0 percent effluent to a second set of five liter tanks. Each tank contained about 2.7 liters of test solution with 59% volume replacement occurring hourly. Every test concentration was replicated. Delivery volumes to each tank were checked twice during the study period. Actual effluent concentrations in the test tanks were determined from conductivity measurements to verify diluter accuracy. Fathead minnows (<u>Pimephales promelas</u>) less than a year old with a mean weight of one gram and a mean length of 45 mm served as the test species. The fish were collected from a private pond in Jackson County on April 21, 1980. They were given prophylactic doses of formalin and neomycin sulfate and main tained at the Point Soughe Studies laborated. The firm were accrimated in collection have tweeter not be properly at 22-24 °C prior to testing. The fish were randomly selected and placed in the test tanks beginning at 1345 on July 7. Loading rates for Tests A and B were ten and five fish per tank respectively. The animals were observed frequently throughout the 96-hour period for signs of stress. Mortality was assessed at 2, 7, 18, 24, 48, 72 and 96 hours (Tables 1-2). The 96-hour LC50's were estimated using the binomial test. Grab samples of the diluent, effluent and test solutions were analyzed onsite for certain parameters. The diluent and effluent were sampled from taps in the mobile laboratory. Test solutions came directly from the fish tanks. The results of the on-site physical and chemical analyses are given in Tables 6-8. In addition to the on-site analyses, the effluent temperature, pH and diluent temperature were continuously recorded. Twenty-four hour composite samples were collected directly from outfall 82023 (005) and the Detroit River. An automatic air probe sampler composited the process erfluent at 15-20 minute intervals. The river (diluent) samples were continuously composited in a submergible jug. Extractable organic contaminants for both streams were analyzed from 4-portion grab-composite samples collected in glass. Grab samples were collected for parameters that could not be composited and to provide data on concentration ranges. The samples were preserved according to Table 10 and shipped to the E.P.B. laboratory in Lansing for analyses. The results appear in Tables 3 - 5. The effluent flows reported for the toxicity evaluation were control of forthe company's July Monthly Operating Report (MOR). The mean monthly discharges, developed by NOAA for the period of record 1936-1974, were used to disclude the Detroit River drough flow. Flow estimates for Pennwalt's mixing some were provided by the Army Corps of Engineers. #### Results & Discussion Process effluent from outfall 820223 (005) at Pennwalt Corporation was toxic to fathead minnows on an acute (short-term) basis. The 96-hour ECC. For the effluent without SO2 treatment (Test A) was estimated at 57% effluent with approximate 95% confidence limits of 50 and 66%. For Test B with C introduced effluent, the estimated 96-hour EC50 was 61% effluent with approximate 95% confidence limits of 50 and 75%. The LC50 is that effluent concentration lethal to 50° of the continuous within the expressed time period. The LC50's and 95% confidence in via presented here are conservative estimates due to the lack of partial montability in at least two concentrations. Partial kills are required to generate statistically sound LC50 values. The onseth of stress and mortality was rapid in the toxicity tests. Fish in 88% and 100% effluent were severely affected in less than an income 8 micros included hemorrhaging, gasping, gaping mouths, poor balance and office of a cocasional erratic swimming and lettings, the top mortalities were released. At the office of the in the 75% effluent concentration in the 15% began to show signs of stress. Within tower hours the annual many effluent were sead. Within the first 24 hours, all fish in effluent concentrations of 66% and greater had expired. In the remaining 72 hours of the study only one more death occurred. The toxicity data are summarized in Tables 1 - 2 for Tests A and B. A major test fish kill occurred between 1100 and 1230 on 301 3. The sharp upturn in mortality corresponded to an increase in conductivity which began after 1040. Effluent concentrations where the measured conductivity equaled or exceeded 21,400 umhos were rapidly fatal. Fish in correct trations where the conductivity was 15,900 umhos or less, were only slightly stressed, or unaffected. The highest conductivity reading of the study was made at 112 to 129 to 10 (Table 6). At that time the conductivity measured 17,500 u highest the 50 effluent. Fish in the 50% effluent containers became hyperactive and ciscoriented. By 1425, the conductivity had dropped to 26,500 umbes and fish seemed to recover. Based on effluent composite and grab sample analyses the next tribbole toxicant was chloride. No other parameter was present in enough quantity to explain the mortality observed in both tests. The colonide consentration elemand 8000 mg/l (x for 2 composites) and ranged from 5400 to 9700 mg/l. The natural measured level occurred during the fish kill on July 8, although the untual navinum for the study period is unknown. The chloride concentration was probably even greater on July 10 when the conductivity reached 31,400 umhos. The chloride concentration corresponding to the 96-hour LC50 of 57% effluent is estimated to fall somewhere between 4600 and 5500 mg/l. These estimates are derived from the average chloride concentration (8000 mg/l) and the concentration at which the July 8 fish kill occurred. Closer prediction of the 96-hour value is difficult due to the fluctuating chloride concentrations that were found in the effluent during the test. The estimates are in line with 96-hour LC50's determined by Adelman and Smith for fathead minnows. In 16 tests with sodium chloride, they calculated 96-hour LC50's ranging from 4270-5100 mg/l as chloride. As in the Pennwalt study, Adelman and Smith's test fish were rapidly affected and displayed some similiarity in stress symptoms. In 12 of their 16 tests, no mortality occurred after 48 hours and the 48-hour LC50's were identical to the 96-hour and threshold LC50's. The threshold LC50 is the concentration at which 50% of the test animals can survive indefinitely. The sulfate concentrations in the effluent from 820223 (005) ranged from 1200-2600 mg/l but were probably not high enough to contribute to the effluent toxicity. In past studies with fathead minnows, the LC50's for sodium sulfate ranged from 9000-14,000 mg/l (6000-9500 mg/l as sulfate) depending upon water hardness and test duration (Becker and Thatcher, 1973). Residual chlorine was not detected in the effluent at any time during
the test period. The slight difference in the 96-hour LC50's for the two tests is due to the wider concentration intervals in Test B rather than to the presence of chlorine in Test A. The 96-hour LC50 is an accepted reference point for expressing acute toxicity. It is not a "safe" concentration. "Safe" concentrations in an aquatic ecosystem permit all normal life processes and are often estimated from the 96-hour LC50 by the use of application factors. For non-persistant, non-cumulative toxicants such as chloride, the recommended application factors are: - 0.05 allowable 24-hour average effluent concentration after mixing. - 0.1 maximum allowable effluent concentration at any time or place after mixing (Nat. Acad. Science, 1973). To achieve "safe" levels, the effluent concentration from outfall 820223 (005) should not exceed 5.7% at the edge of the mixing zone at any time, nor average more than 2.8% there over a 24-hour period. 1 - The actual test results were reported as mg/l sodium chloride. To convert, multiply mg/l chloride x 1.65 = mg/l sodium chloride. The average effluent flow for the test period was 6100 $\rm M^3/day$. The seven-day, once in 10-year low flow (7010) for the Detroit River is 291,000,000 $\rm M^3/day$ (Fraidenburg, 1979). For the purpose of evaluating compliance with state water quality standards, Pennwalt's mixing zone is defined as the right 100 feet of the Detroit River for 500 feet downstream of the south property line. The mixing zone volume, as estimated from Army Corps of Engineers flow measurements, is about 4.4% of the total river flow (Wilshaw, 1979). At the observed average flow rate, effluent from outfall 820223 (005) would constitute 0.05% of the mixing zone flow during the 7010. The effluent would achieve long term safe concentrations at the mixing zone edge at that time. Effluent sample results are compared to the limitations in Pennwelt's National Pollution Discharge Elimination System (NPDES) Permit No. MICCO2381 and Final Order of Abatement No. 1981 in Table 9. Based on those comparisons, the limitations were met during the 96-hour toxicity evaluation. The effluent pH's ranged from 7.6 to 8.9 during the test period. Study results for suspended solids did not compare well to the company self-monitoring data reported in the July Monthly Operating Report (MOR). With one exception E.P.B. results were two to three times higher than company results. The only bioassays previously conducted with effluent from outfall 820223 (005) were static screening tests using the macroinvertebrate Dappria magna. The 48-hour LC50's for the April and November 1978 tests were $\frac{1}{6}$ and 1 respectively (Wolfe, 1978; Waybrant, 1978). The effluent pH's and chlorides for those tests were considerably higher than found during the July 1980 study. The April sample also contained more than 600 mg/l chlorine before dechlorination and testing. Although the test results are not directly comparable due to different test techniques and species, it would appear that the effluent toxicity has decreased. Since 1978, the company has stopped manufacturing perchloran and anhydrous caustic soda and has improved the pH control at 005. These changes are the most likely reasons for the reduced effluent toxicity. | Percent Effluent - Test A | Percent Mortality/Exposure Period | | | | | | | | | | | |---------------------------|-----------------------------------|---------|----------|----------|----------|----------|---------|--|--|--|--| | | 2 hours | 7 hours | 18 hours | 24 hours | 48 hours | 72 hours | % hours | | | | | | 100 | 15 | 100 | 100 | 100 | 100 | 100 | 100 | | | | | | 88 | . 0 | 0 | 35 | 100 | 100 | 100 | 100 | | | | | | 75 | 0 | 0 | 0 | 100 | 100 | 100 | 100 | | | | | | · 66 | 0 | 0 | 0 | 100 | 100 | 100 | 100 | | | | | | 50 . | Ö | Ó | Ó | 0 | 0 | Ö | Ö | | | | | | 33 | 0 | 0 | 0 | Ō | Ō | Ó | 0 | | | | | | 25 | Ö | Ó | Ó | Ö | Õ | Ŏ | Ō | | | | | | 12 | Ō | Ō | Ö | Ŏ | Ŏ | Ŏ | Ō. | | | | | | 0 (control) | Ŏ | Ó | Ŏ | Ŏ | Õ | ŏ | Ŏ | | | | | $\frac{\text{Table 2}}{\text{effluent pretreated with SO_2}} \text{ Percent mortality of fathead minnows after exposure to concentrations of the same Pennwalt Corporation}$ | | | | • | | | | | |---------------------------|---------|---------|------------|--------------|-------------|----------|----------| | Percent Effluent - Test B | | | Percent Mo | rtality/Expo | sure Period | | | | | 2 hours | 7 hours | 18 hours | 24 hours | 48 hours | 72 hours | 96 hours | | 100 | 20 | 100 | 100 | 100 | 100 | 100 | 100 | | 75 | 0 | 0 | 0 | 100 | 100 | 100 | 100 | | 50 | 0 | 0 | 0 | 0 | 10 | 10 | 10 | | 25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0. | | 0 (control) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | - | | | |--|---|---|--|--|--|---------------------------|--| | <pre>1 - Flow rate used to compute 2 - INT = interference 3 - Test method not approved. 4 - U = undetected</pre> | Persistant chlorinated hydrocarbons Hexachlorobutadiene (HCBD) '2,4,6 Trichlorophenol(2,4,6TCP) pentachlorophenoi (PCP) | PCB 1242'\ PCB 1254 PCB 1260 -Di-n-buty) phthelates (USP) -Bis(2-ethylhexyl) phthelates | Total copper (Cu) Total nickel (Ni) Total nickel (Ni) Total lead (Pb) Total zinc (Zn) Total zinc (Zn) Total iron (Fe) Total magnesium (Mg) Total sodium (Na) Total calcium (Ca) Total mercury (Hg) | ides te (SO ₄) de de inded solids lived solids | Phenol Nitrite & nitrate nitrogen-N Ammonia nitrogen-N Kjeldahl nitrogen-N Orthophosphates-P Total phosphorus-P | | Table 3 Laboratory analyses of effluent composite samples collected from outfall 820223 (005) at Penmwal't Corporation. Sample Period From 7-7-80 - 1555 7-9-80 - 0810 7-8-80 - 1555 7-10-80 - 0810 6,100 5,900 | | kg/day - | 1111 | <u>ug/1</u> | 6.800
14 | | * 9.005
0.41
0.18
0.18
0.02 | 1.6 | nalyses of effluent compo
at Pennwal's Corporation.
7-7-80 - 15
7-8-80 - 15 | | ilculated fi | ::::: | ::::: | 41,000 | 13,000
13,000
160
98;000 | 0:10 | kg/day

9.8 | ration.
80 - 1555
80 - 1555 | | calculated from company MOR'(weighted average). | ^ 0.02
0.7 | 12000 | 4 0.005
4 0.005
4 0.005
4 0.005
6 500
17
6 0.001 | 8,500
1,200
2,100
15,000 | < 0.005
0.44
0.30
0.96

0.054 | <u>mg/1</u>
INT
1.8 | samples collected
7-9-80 -
7-10-80 -
5,90 | |)R¹(weighted a | 0.0006
0.0006 | 0.002 | 38,000
100
38,000 | \$0,000
7,100

170
88,000 | 0.12.6 | kg/d3y | ected from out:
30 - 0810
80 - 0810 | | verzge). | | | | | | | fall | -9- | • Sample period 7/7/80 @ 2200
1 U = undetected
2 - Test method not approved. | *2.4.6 Trichlorophenol (2.4.6 TCP) *Pentacalarophenol (PCP) | *FOB 1242 *FOB 1254 *FOB 1259 *FOB 1239 *Display phthalates (DBP) *Display phthalates (DBP) *Them lersistant chlorinated *Them lersistant chlorinated | | | Total lead (Pb) Total zinc (Zn) | | Suspended solids
Disspired solids | injorides
lifate (504)
Ironide2 | Nitrite & nitrate nitrogen-N
Amenia nitrogen-N
rjeheahl nitrogen-N
Total phosphorus-P | 10000 | 88 | | Sample Period From To | Table 4 Laboratory analyses o Detroit River. | |--|---|---|----------|-----------------|---------------------------------|---------------------------|--------------------------------------|---------------------------------------|--|----------|-----------|-------------|---------------------------------|---| | - 7/8/80 @ 2115 | (P) < 0.02
< 0.1
< 0.1 | 0.4
0.4
0.1
0.1
0.1
2
(DEHP) 10 | 40
12 | 0.88
• 0.001 | 0.005
0.005 | * 0.000
0.000
0.000 | 14
130 | 17.4
19
< 1 | 0.30
0.28
0.77
0.11 | < 0.0005 | 10
2.2 | <u>mg/1</u> | 7-7-80 - 1500
7-8-80 - 1500 | of diluent composite san | | | < 0.02
< 0.1
< 0.1 | (0.1)
(0.1)
(0.1)
(1)
(1) | 16 | 1.7
• 0.001 | 0.006
< 0.005
0.02 | 0.002
0.006
0.006 | 20
330 | 17.0
32
~ 1 | 0.30
0.33
0.82
0.080 | < 0.005 | 12
2.2 | mg/1 | 7-9-80 - 0920
7-10-80 - 0900 | laboratory analyses of diluent composite samples collected from the
Detroit River. | Table 5 Laboratory analyses of grab samples collected during 7/7-11/80 at Pennwalt Corporation. | | - • | | - | | | | |---|-------------------------|-------------------|-------------------|---------|-----------------------|------------------------| | Sampling Location
Date | 7- 7-80 | 82022
7-8-80 | 3 (005)
7-8-80 | 7-9-80 | Detroit Riv
7-7-80 | er (Diluent)
7-9~80 | | Time | 2400 | 1010 | 1340 | 1 3 3 8 | 2200 | 1338 | | Temperature (°C) |
27 | 30 | | | | | | | <u>mg/1</u> | mg/1 | mg/l | mg/1 | mg/1 | mg/1 | | COD
TOC | INT ¹
1.4 | INT
1.9 | | | | 8
2.4 | | Pheno1 | | | | | | < 0.005 | | Nitrite & nitrate nitrogen- | | 0.34 | | | | | | Ammonia nitrogen-N | 0.15 | 0.24 | 0.21 | | •- | | | Kjeldahl nitrogen-N | 0.44 | 0.92
0.03 | | | | | | Orthophosphates-P
Total phosphorus-P | 0.02
0.04 | 0.03 | | | | •• | | Chlorides | 5,400 | 8,500 | 9,700 | | | | | Sulfate (SO ₄) | | | 2,600 | | | •• | | Total bromides ⁴ | | | < 10 | 4- | | | | Suspended solids | 6 | 19 | | | | | | Dissolved solids | 12,000 | 20,000 | | | | | | Total cadmium (Cd) | 0.03 | 0.04 | | | | < 0.002 | | Total chromium (Cr) | < 0.05 | < 0.05 | | | | 0.006 | | Total copper (Cu) | 0.02 | 0.04 | | | | 0.006 | | Total nickel (Ni) | < 0.05 | < 0.05 | | | - · · | 0.005 | | Total lead (Pb) | < 0.005 | < 0.005
< 0.05 | | | •• | < 0.005 | | Total zinc (7n)
Total iron (fe) | ~ 0.05
0.35 | 7 0.05 | | •• | | 0.02
1.6 | | Oil & Grease (1.P.) | 7 1 × 1 | · 1.0 | | , 1 | 1 | 3 | | Oil & Greace (Gray.) | . 2 | . 2 | | < 2 | ٠ ' ' | 2 | | Sampling Lucation | | 820223 | (005) | | Detroit Rive | r (Diluent) | |--|--------------------|-------------|---------------|-------------|--------------|-------------| | Pate | 7-7-80 | 7-9-80 | 7-8-80 | 7-9-80 | 7-7-80 | 7-9-80 | | lime | 2400 | 1010 | 1310 | 1338 | 2200 | 1338 | | | <u>ug/1</u> | <u>ug/1</u> | <u>uq/1</u> | <u>ug/1</u> | ug/1 | <u>1\pu</u> | | PCB 1242 | < 0.1 | < 0.1 | | | | | | PCB 1254 | < 0.1 | < 0.1 | | | | ~- | | PCB 1260 | < 0.1 | < 0.1 | | ' | | | | Hexachlorobutadiene (HCBD) | < 0.1 | < 0.1 | | | | | | Hexachlorocyclopentadiene (HCP) | < 0.1 | < 0.1 | | | | ~- | | Octachlorocyclopentene | < 0.1 | < 0.1 | | | | •- | | Hexachlorobenzene (HCB) | < 0.1 | < 0.1 | | | ' | •- | | Dichlorobenzene (DCB) | < 0.1 | < 0.1 | | | •• | | | Pentachlorophenol (PCP) | Trace ² | Trace | | | | | | 2,4,6 Trichlorophenol (2,4,6 TCP) | 0.1 | 0.1 | | | •- | *- | | Other chlorinated phenols | U ³ | U | ' | | | | | Persistant chlorinated hydrocarbons | ŭ | ŭ | · | | | •• | | 1.2 Dichloropropane | 6 | 7 | | 8 | 8 | 10 | | Chloroform | 4 | 8 | | 5 | | < 1 | | Other chlorinated and brominated volatile hydrocarbons | Ü | Ü | . | | U | | | Perchloroethylene | | | | •- | Trace | | Table 6 On-site analyses of effluent grab samples collected during the July 7-11, 1980 test at Pennwalt Corporation's outfall 820223 (005). | | Outrai | 1 020223 | (005). | | | | | | |----------------|--------|----------|--------------|----------------------|-------------------------------|-----------------------------|-------------------------------|-----------------------------| | Date | Time | Temp.* | рН
(S.U.) | Conductivity (umhos) | Dissolved
Oxygen
(mg/l) | Total
Chlorine
(mg/l) | Total
Alkalinity
(mg/l) | Total
Hardness
(mg/1) | | 7-7-80 | 1330 | 24 | 8.0 | 20,200 | 7.8 | • | | | | 7-7 -80 | 1550 | 25 | 7.9 | 19,100 | 7.6 | υ ¹ | | | | 7-7-80 | 2210 | 25 | 8.0 | 20,900 | 7.4 | Ū | 1,900 | 60 | | 7-8-80 | 0815 | 24 | 7.8 | 19,700 | 7.3 | Ū | 900 | 60 | | 7-8-80 | 1040 | 27 | 8.1 | 19,900 | · 6.8 | - | | | | 7-8-80 | 1330 | 28 | 8.1 | 28,700 | 6.8 | U | | | | 7-8-80 | 1555 | 28 | 8.1 | 27,600 | 7.1 | - | | | | 7-8-80 | 2115 | 26 | 7.9 | 18,200 | 7.2 | | | | | 7-9-80 | 0800 | 24 | 7.6 | 13,700 | 7.2 | U | 840 | 48 | | 7-9-80 | 1100 | 24 | 8.0 | | 7.2 | • | 0.0 | | | 7-9-80 | 1305 | 24 | 8.2 | 18,300 | 7.2 | | | | | 7-9-80 | 1530 | 25 | 8.2 | 20,800 | 7.1 | บ | | | | 7-9-80 | 2115 | 25 | 8.2 | 25,100 | 7.0 | ŭ | | | | 7-10-80 | 0800 | 24 | 8.1 | 25,400 | 8.1 | Ü | | | | 7-10-80 | 1125 | 28 | 8.2 | 31,400 | 6.6 | ນິ | 3,000 | 56 | | 7-10-80 | 1405 | 28 | 8.2 | 26,500 | 6.9 | · · | 3,000 | 30 | | 7-10-80 | 1545 | | | | | | | | | | | 28 | 8.3 | 25,000 | 6.9 | | | - | | 7-10-80 | 2145 | 26 | 8.3 | 18,200 | 6.7 | 416 | 3 =00 | | | 7-11-80 | 0810 | 25 | 8.3 | 25,100 | 7.3 | ND | 1,700 | 52 | | 7-11-80 | 1030 | 27 | 8.0 | 20,900 | 7.0 | | | | | 7-11-80 | 1330 | 28 | 8.0 | 20,300 | 6.9 | | | | ^{1 -} INT = interference 2 - Present but in quantity- accepted lower test limit (<0.1 ug/l for PCP; <1 ug/l for perc). 3 - U = undetected 4 - Test method not approved.</pre> ^{1 -} Undetectable * - After heat exchanger. | Dajt e | Ţłuw | Temp.*
(°C) | (s.v.) | Conductivity (unhos) | Dissolved
Oxygen
(mg/1) | iotal
Chlorine
(mg/l) | Total
Alkalinit <u>y</u>
(mg/1) | Total
Hardness
(mg/l) | |-----------------|--------------|----------------|--------|----------------------|-------------------------------|-----------------------------|---------------------------------------|-----------------------------| | 7-7-80 | 1330 | 23 | 7.8 | 2 50 | 7.4 | | | | | 7-7 -80 | 1550 | 24 | 7.8 | 249 | 7.3 | Trace ^l | | | | 7-7-80 | 2210 | 23 | 7.6 | 23 8 | 7.2 | | 84 | 100 | | 7- 8-80 | 0815 | 23 | 7.5 | 245 | 7.4 | υ ² | 8 8 | 100 | | 7-8-80 | 1040 | 24 | 7.8 | 243 | 7.2 | | | | | 7- 8-80 | 1330 | 25 | 7.7 | 261 | 7.4 | | | | | 7-8-80 | 1555 | 24 | 7.9 | 25 8 | 7.2 | | | | | 7-8-80 | 2115 | 23 | 8.0 | 2 25 | 6.9 | | | | | 7-9- 80 | 0 800 | 22 | 7.5 | 2 62 | 6.3 | U | 84 | 96 | | 7-9- 80 | 1100 | 23 | 7.6 | 25 5 | 6.5 | | | | | 7-9 -80 | 1305 | 22 | 7.7 | 253 | 6.4 | | | | | 7-9 -80 | 1530 | 23 | 7.5 | 243 | 6.7 | U | | | | 7-9 -80 | 2115 | 23 | 7.6 | 273 | 6.3 | | | | | 7-10-80 | 0800 | 22 | 7.4 | 244 | 6.8 | IJ | | | | 7-10-80 | 1125 | 24 | 7.4 | 243 | 6.7 | | 84 | 100 | | 7-10-80 | 1405 | 25 | 7.5 | 24 8 | 6'.8 | | | - - | | 7-10-80 | 1545 | 25 | 7.5 | 235 | 7.0 | | | | | 7-1 0-80 | 2145 | 23 | 7.7 | 260 | 6.8 | | | | | 7-11-80 | 0810 | 23 | 7.6 | 237 | 6.8 | U | 84 | 100 | | 7-11-80 | 1030 | 24 | 7.4 | 243 | 6.7 | | | | | 7-11-80 | 1330 | 26 | 7.6 | 230 | 6.7 | | | | ^{1 -} Chlorine present but in quantity << acceptable lower detection limit of 0.2 mg/l 2 - Undetectable \star - After heat exchanger. Table 8 On-site analyzed of grab samples collected from test containers during the 7/7-11/80 test at Pennwalt Corporation's outfall 820223 (005). Test A - Effluent as discharged to Detroit River | <u>Date</u> | <u>Time</u> | % Effluent | Temp. | pH
(\$.U.) | Conductivity (umhos) | Dissolved Oxygen (mg/l) | |-------------|-------------|--|--|---|---|---| | 7-8-80 | 1400 | 88
75
66
50
33
25
12 | 28
27
27
26
26
26
26
26
25 | 8.2
8.3
8.3
8.3
8.3
8.3
7.9 | 25,600
22,300
21,400
15,900
11,300
8,580
4,770
262 | 7.0
7.2
7.1
7.0
6.9
7.0
7.0 | | 7-10-80 | 1330 | 50
33
25
12
0 | 26
26
26
26
26 | 8.3
8.3
8.3
8.2
7.8 | 15,200
11,400
8,260
4,560
-271 | 6.8
6.9
6.9
6.7
6.8 | | Test B - | Effluent to | reated with SO ₂ | | | | | | 7-9-80 | 1100 | 50
25
12
0 | 22
22
22
22 | 8.2
8.2
8.1
8.0 | 9,460
4,640
2,730
294 | 6.8
6.7
6.7
7.0 | | 7-10-80 | 1330 | 50
25
12
0 | 26
26
26
25 | 8.3
8.3
8.2
7.7 | 15,200
8,190
4,310
248 | 7.0
7.1
7.1
7.1 | | Parameter (Unit) | NPDES Permit Final Limitations only Monthly Operating Report . | | | | | | | · | |--------------------------------|--|------------|--------------|-------------|--------|--------|--------|-----------------| | • ,,,=,, | baily | Daily | Monthly | Monthly | | | | | | 000000 (005) | <u>¥vč⊥</u> ade | Max times | Average | Maximori | 7-7-80 | 7-8-86 | 7-9-80 | 7- 10-30 | | 820223 (005) | | | £ 000 | 3 500 | . 100 | . 100 | F 700 | 6,400 | | Flow (M ³ /day) | | | 6,800 | 7,600 | 6,100 | 6,100 | 5,700 | • | | Suspended solids (mi/l) | 35 | 70 | 30 | 3 58 | 7 | 10 | 8 | 10 | | (kg/day) | 212 | 425 | 2 00. | 2.435 | 42 | 60.3 | 45.8 | 64.0 | | Ammonia nitrogen-N (mg/1) | 1.0 | 1.5 | 0.36 | 1.38 | | 0.62 | | 0.00 | | pH (S.U.) | not <6.5 n | or >9.5 | | 12.4 | 8.8 | 8.6 | 8.3 | 8.8 | | • | | Mi | n | 2.7 | 7.8 | 7.5 | 7.3 | 7.6 | | Chlorides (mg/l) | | | 6,836 | 9,372 | | 7,480 | | 7,572 | | Total chlorine residual (mq/l) | 1.0 | 1.5 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | | COD (kg/day) | | 821 | 58.5 | 221 | 130 | | 12 | | | Lead (ug/l) | 100 | 200 | 8 | 10 | | | 10 | | | (kg/day) | 0.6 | 1.2 | 0.050 | 0.054 | | | 0.054 | | | Oil & Grease (visual) | No visibl | e film | 0 | 0 | 0 | 0 | 0 | 0 1 | | (mg/l) Quantita | tive analys | es not red | a'd | | | | | 55 | | Temperature (*F) | · | | 80 . | 87 | 68 | 81 | 79 | i . | | | Study Results ¹ | | | |--|---|-----------------------------------|--| | | 7/7-8/80 | 7/9-10/80 | | | Suspended solids (mg/l) (kg/day) | 27 (6, 19)
160 | 29
170 | | | Ammonia nitrogen-N (mg/1) | 0.18 (0.15, 0.24, | 0.30 | | | pH (S.U.) | 8.62 | 8.5 | | | Chlorides (mg/l) | Min. 7.8
7,500 (5,400, 8,500,
9,700) | 7.6
8,500 | | | Total chlorine residual (mg/l) COD (kg/day) Lead (ug/l) Oil & Grease (mg/l) Temperature (°F) | U3—Sec Table 6 INT4 (INT, INT) <5 (<5, <5) <2 <2 (81, 86) | U-See Table 6
INT
<5
< 2 | | | /18/81 | 3 | istribution | |--------|---|-------------| | | | Ä | | Report by: | Chemical & Physical Analyses by: | Contact with Management: | Toxicity Evaluation by: | All samples cooled to 4°C and preserve maintained. | Acid & Base-neutral Extractables Dec
& Purgeables su |
--|--|---|---|--|---| | Bonnie White Point Source Studies Section Environmental Services District Environmental Protection Eureus Michigan Department of Natural Resources | Environmental Protection Survey Laboratory | John Lewis, Supervisor of Special records Control & Certified Operation | Bonnie L. White, Acuatic Libi. ist
Jane Wygant, Student Aide | All samples cooled to 4°C and preserved upon collection and chain of costode maintained. | Dechlorinated (if needed) with scott trib-
sulfate (1 drop 0.141 H/mg/1 Ciz/200 ml). | | (ab) e | |----------| | ا2 | | Sample | | Preserva | Parameter COD/TOC/Phenol (Chlorine :bsent) 10 drops conc. H₂SO₄/250 ml (to co 2 ml 1:1 HNO3/250 ml (to pH <2). 10 drops conc. H₂SO_¢/250 ml (to ;) 10 0il & Grease Total Metals | | Sample Preservation | | |--------------|---------------------|------| | Preservative | | 1001 | ¹ - Study results are from Tables 3 - 5. Grab sample ranges are shown in parentheses (). 2 - pH values from continuous record and Table 6. 3 - U = undetected 4 - INT = Interference To obtain MGD multiply $\rm M^3/day$ by 0.0002642 To obtain lbs/day multiply kg/day by 2.205 #### References Cited - Adelman, I.R. and L.L. Smith, Jr. 1976. Standard test fish development Part I. EPA-600/3-76-061a. US EPA-Environ. Res. Lab., Duluth MN. 77 p. - American Public Health Assoc. (APHA), American Water Works Assoc., and Water Pollution Control Federation. 1971. Standard methods for the examination of water and wastewater. 14th ed. APHA Inc., Washington D.C. p. 552. - Becker, C.D. and T.O. Thatcher. 1973. Toxicity of power plant chemicals to aquatic life. USAEC and Battelle Pacific Northwest Labs, Richland Wash. p. 422. - Boersen, G. and W. Erickson. 1980. Report of an industrial wastewater survey conducted at Pennwalt Corporation - Wyandotte, MI. July 7-8, 1980. Mich. Dept. Nat. Res. 22 p. - Fraidenburg, A. 1979. Personal Communication. Mich. Dept. Nat. Res. - Mater Quality Criteria 1972. U.S. Government Printing Office, Washington, D.C. 594 p. - Wilshaw, R. 1979. Personal communication. Army Corps of Engineers, Detroit. ## Figure 1 Pennwalt Corporation - East Plant ## Process Flow Diagram * SOLIDS TO LAND FILL * OIL TO LICENSED DISPOSAL CONTRACTOR NOTE: ALL FLOWS ONCE THROUGH COOLING WATER This drawing, including the principle of design, is the property of Pennwalt Corporation and is submitted with the understanding that it will not be used for any purpose except that specified in writing by the Pennwalt Corporation. | SCHEMATIC DIAGRAM PLANT' EFFLUENTS DISCH. SER. No. 006 | | | | | | | | |--|--------|--------|--------|--|--|--|--| | SCALE | | DATE | 6-9-70 | | | | | | DRAWN | FRENCH | APP'D. | | | | | | | PENWALT- | | | | | | | | | SK. NO. WW2 - 3383 | | | | | | | | | A LAC ALBANENES | | | | | | | | MICHIGAN DEPARTMENT OF NATURAL RESOURCES ENVIRONMENTAL PROTECTION BUREAU POINT SOURCE STUDIES SECTION Peport of an Industrial Wastewater Survey Conducted at PENNWALT CHEMICAL CORPORATION All Outfalls No. 820298 NPDES No. M10002381 Wayne County Wyandotte, Michigan July 7-8, 1980 ## Survey Surmary Wastemater monitoring was performed during one twenty-four hour survey period starting Monday, July 7, 1980. The results of this survey are compared to the final limitations in the facility's National Pollutant Discharge Elimination System (NPDES) Permit, No. MICON2331 as established under Final Order of Abatement No. 1981 entered on October 20, 1977. Based on that comparison the BOD5 loading limitations at outfall 821088 (COS) was exceeded during the survey (Table 3). The survey results are compared to the company's self-monitoring results reported in the Monthly Operating Report (MOR). The comparison of these results is presented as Table 3. The only major discrepancies occurred at the intake. 20009: Survey concentrations for suspended solids are significantly lower than the concentrations reported by the company on the survey was also significantly less than any reported by the company for the month (Table 3). The composite samples were split with the company for comparison of laboratory results. The comparison is presented as Table 4. No major discrepancies are noted. The last survey performed at this facility was in November, 1978. Since the last survey several process changes have occurred at the plant. The peruloran, orthosil and anhydrous caustic process have all been discontinued. Also the liquid ferric process waters have been routed from outfall 903 to outfall 905. These changes have resulted in a sharp decrease in the chlorides concentration and an increase in the total iron concentration this survey at outfall 905. A significant decrease in total iron concentration is also noted at outfall 906 (Table 5). #### Survey Coments The sal ammoniac process was down during the survey period. The results from organic scans performed for various volatile organics, acid extractables and base/neutral extractables are presented in Table 2. A 96-hour acute toxicity evaluation of outfall 005 was performed by the bioassay unit the same week in which his survey was conducted. The results from this study are included in a separate report. #### Plant Processes The Pennwalt Corporation in Myandotte manufactures organic and inorganic chemicals in two separate plants. The inorganic plant manufactures chlori-Alkali industrial chemicals and iron chlorides. The organic plant manufactures industrial organic chemicals and miscellaneous special organic compounds. The inorganics plant or east complex utilizes salt brine, ammonia, silica, scrap iron and various other raw materials. A process schematic of the plant is depicted in Figure 1. Production facilities and the plant layout are shown in Figure 2. The organics plant or west complex synthesizes organic compounds from various raw organic materials. The chief products are alkylamines and rubber chemicals. About 100 different compounds are produced at the plant. Figure 3 illustrates the plant layout. Production at both plants was considered normal during the survey. Both plants operate 24 hrs/day, 7 days/wk. The inorganic plant employs about 300 people and the organic plant about 250 people. #### Water Supply, Wastewater & Treatment All process and cooling water used in both plants is obtained through two intakes on the Trenton Channel of the Detroit River. The north intake (820412) supplies only the barometric condensers in the evaporator department. The south intake (820409) services the remainder of the inorganic plant, the organic plant and the Detroit Edison Plant in the east complex. Domestic water is supplied by the City of Detroit. Both intakes have a continuous backwash on the intake screens. The south intake's backwash is discharged into the Detroit Edison plant's outfall. Both backwashes are unpermitted. The water from the south intake is periodically chlorinated. Mon-contact cooling water from the chlorine liquidation process is discharged through outfall 820224 (001). Outfall 820190 (002) discharges cooling water from the barametric condensers and chlorine cell room, rinse wall from sodium hydroxide storage tanks, flue gas scrubber water, sulfuric acid tank cooling water and yard drainage. About 95°, of the wastewater originates from the barometric condensers. The pH of the wastewater is adjusted using carbon dioxide, sulfuric acid or caustic prior to discharge. Outfall 820193 (003) discharges cooling water from the ammonium chloride process. The pH is adjusted using carbon dioxide, sulfuric acid or caustic prior to monitoring and discharge into the Wayne County Drain No. 5. Seal water from the liquid ferric pumps, chlorine cell room drains, wash water from the evaporators, wash water from the tank room and back wash from two of the filters used to filter caustic are discharged via outfall 820223 (005). The combined waste streams are provided settling in one of two settling lageons. Following continuous pH adjustment with carbon dioxide, sulfuric acid or caustic, if necessary, the wastewater is monitored and enters a Wayne County Drain prior to entering the Detroit River. The laguon which is not being used for settling is dredged and the solids disposed of by deep well injection. The lagoon not in use is also used to receive any wastewater generated from the replacement of the asbestoes diagram filters in the chlorine cell room. Sludge from the wastewater treatment in the organics plant and residues from plant processes are discharged in a containment lagoon south of the organics plant. All sanitary wastes are discharged to the city's sanitary sewer system. #### Survey Procedure The flows and samples were obtained as follows: | Outfall | Flow Measurement | Sampling | |-----------------------|--|---| | 820224 (001) | Company totalizer. | Automatic air activated sampler & individual grabs. | | 320190 (692) | Company totalizer. | Submergible sampler & individual grabs. | | 520193 (003) | Company totalizer. | Automatic air activated sampler & individual grabs. | | 320223 (005) | 11.25 inch Parshall flume
and water level recorder. | Automatic air activated sampler | | 821988 (006) | Company totalizer. | Automatic air activated sampler & individual grabs. | | 820412 (North Intake) | None | Submergible sampler & individual grabs. | | 829459 (South Intake) | None | Submergible sampler &
individual grabs. | A water level recorder provides a continuous account of the liquid level or head through a flume. A head versus time graph is obtained for the duration of the survey period. The total volume of wastewater through the flume during the survey period is computed from the graph. An automatic sampler composites samples at timed intervals. A submergible sampler obtains samples at a continuous rate. Polychlorinated biphenyl (PCB) and sulfide composite samples are collected by the grab composite method. An individual grab is a single instantaneous sample. Samples were analyzed by the Environmental Protection Bureau Laboratories located in Lansing. Samples were preserved according to Table 6. The results of the physical, chemical and bacteriological analyses are presented in Tables 1 & 2. Pennwait Chemical Corporation - Wyandotte | <u>Table 1</u> Analyses of composite | samples. | | | | | |--|--|-------------------------------|--|--------------------------|--| | Outfalls | 820224 | (001) | 820190 (002) | | | | Survey Period From
To | |) - 1345
) - 1345 | 7-7-80 - 1655
7-8-80 - 1655 | | | | Computed flow rate* (M3/day) | (21, | ,500) | (55,400) | | | | | mg/1 | kg/day | mg/1 | kg/day | | | Suspended solids
Dissolved solids | 14
160 | 300
3,40 0 | 15
200 | 830
10,000 | | | .0
.0 | 7
2.0 | 200
43 | 9
2.4 | 500
130 | | | Pheno1 | 0.007 | 0.2 | < 0.005 | | | | Mitrite & nitrate nitrogen-N
Amonia nitrogen-N
Mijeldahl nitrogen-N
Orthophosphates-P
Total phosphorus-P | 0.36
0.23
0.48
0.04
0.07 | 7.7
4.9
10.
0.9
2 | 0.32
0.24
0.52
0.05
0.09 | 18
13
29
3
5 | | | Chlorides | | | 36. | 2,000 | | | Total cadmium (Cd) Total chromium (Cr) Total copper (Cu) Total nickel (Ni) Total lead (Pb) Total zinc (Zn) | < 0.02
< 0.05
< 0.02
< 0.05
< 0.05
< 0.05 |

 | < 0.02
< 0.05
< 0.02
< 0.05
< 0.05
< 0.05 |

 | | | Total iron (Fe) | 0.76 | 16 | 0.77 | 43 | | ^{*} Flow rates used in the computation of kg/day (obtained from company totalizer/MOR). To obtain MSD multiply M^3 /day by 0.0002642 To obtain 1bs/day multiply kg/day by 2.205 Pennwalt Chemical Corporation - Wyandotte | Table 1 (continued) | | | | | | |--|---|----------------------------|--|--------------------------------------|--| | Outfalls | , 820193 | (003) | 820223 (005) | | | | Survey Period From
To | | - 1445
- 1445 | | 0 - 1555
0 - 1555 | | | Computed flow rate* (M ³ /day)
Highest flow rate (M ³ /day)
Lowest flow rate (M ³ /day) | (23,200) | | 4,340
11,900 - 7-8-80 @ 0023
977 - 7-8-80 @ 0022 | | | | | mg/1 | kg/day | <u>mg/1</u> | kg/day | | | Suspended solids
Dissolved solids | 13
390 | 300
9,000 | 27
16,000 | 120
69,00 0 | | | COD
TOC | 11
2.4 | 260
56 | Int
1.6 | 6.9 | | | Phenol | 0.007 | 0.2 | < 0.005 | | | | Nitrite & nitrate nitrogen-N
Ammonia nitrogen-N
Kjeldahl nitrogen-N
Orthophosphates-P
Total phosphorus-P | 0.47
0.64
1.1
0.06
0.17 | 11
15
26
1
3.9 | 0.41
0.18
0.33
0.02
0.05 | 1.8
0.78
1.4
0.09
0.2 | | | Chloridės
Sulfate (SO _A)
Magnesium (Mg)
Sodium (Na)
Calcium (Ca) | 148

 | 3,430 | 7,500
2,200
1
6,800 | 33,000
9,500
4
30,000
61 | | | Total cadmium (Cd) Total chromium (Cr) Total copper (Cu) Total nickel (Ni) Total lead (Pb) Total zinc (Zn) | < 0.02
< 0.05
< 0.02
< 0.05
0.009
< 0.05 | 0.2 | < 0.05
4.03
< 0.05
< 0.005
< 0.005 |
 | | | Total iron (Fe)
Total mercury (Hq) | 0.78
 | 18 | 0.59
< 0.001 | 2.6 | | ^{*} Flow rates used in the computation of kg/day (obtained from company totalizer/MOR). Int - Interference Int - Interference To obtain MGD multiply M3/day by 0.0002642 To obtain 1bs/day multiply kg/day by 2.205 Pennwalt Chemical Corporation - Wyandotte | . Table 1 (continued) | | | | |--|---|-----------------------------|--| | Outfalls | 821088 | 3 (006) | 820412 (Intake) | | Survey Period From
To | | 7 - 1415
7 - 1415 | 7-7-80 - 1635
7-8-80 - 1635 | | Computed flow rate* (M3/day) | (32 | ,500) | | | | <u>mg/1</u> | kg/day | mg/1 | | Suspended solids Dissolved solids | - 160 | 300
5,200 | 6
400 | | ob
Coc | 37
15. | 1,200
490 | 9
2.3 | | Phenol
Sulfide (S) | 0.009 | 0.3 | < 0.005 | | 8 DD ₅ | 15. | 490 | 3.5 | | Hitrite & nitrate nitrogen-N
Arronia nitrogen-N
Kjeldahl nitrogen-N
Orthochosphates-P
Total phosphorus-P | 0.34
0.46
3.6
9.01
0.08 | 11
15
120
0.3
3 | 0.30
0.27
0.64
0.02
0.08 | | Chlorides | 21 | 680 | 26. | | Total cadrium (Cd) Total chromium (Cr) Total copper (Cu) Total nickel (Ni) Total lead (Pb) Total zinc (Zn) Total iron (Fe) | < 0.02
< 0.05
< 0.02
< 0.05
< 0.005
< 0.05
0.57 | 19 | < 0.02
< 0.05
< 0.02
< 0.05
< 0.05
< 0.05
0.05 | | | <u>ug/1</u> | | <u>ug/1</u> | | CB 1242
PCB 1254
PCB 1260 | < 0.1
< 0.1
< 0.1 | | < 0.2
< 0.1
< 0.1 | ^{*} Flow rates used in the computation of kg/day (obtained from company totalizer/MOR). To obtain MGD multiply ${\rm M}^3/{\rm day}$ by 0.0002642 To obtain lbs/day multiply kg/day by 2.205 | | _ | |--|--| | Table 1 (continued) | | | Outfall | 820409 (South Intake) | | Survey Period From
To | 7-7-80 - 1530
7-8-80 - 1530 | | | <u>mg/1</u> | | COD
TOC | 9
2.2 | | Phenol | < 0.005 | | Nitrite & nitrate nitrogen-N
Ammonia nitrogen-N
Kjeldahl nitrogen-N
Orthophosphates-P
Total phosphorus-P | 0.30
0.26
0.56
0.03
0.06 | | Chlorides
Sulfate (SO ₄) | 13.5
16 | | Total cadmium (Cd) Total chromium (Cr) Total copper (Cu) Total nickel (Ni) Total lead (Pb) Total zinc (Zn) Total iron (Fe) | < 0.02
< 0.05
< 0.02
< 0.05
< 0.05
< 0.05
0.21 | | | | Table 2 (continued) | | | | | | | Total | | | | | | |---------------------|--------------|--------------|-----------|---------|--------|----------------|----------|--------|-----------|--------|---| | | Ortho- | Total | | | Susp. | diss. | Total | Total | Total | Total | | | Date Time | phosphates-P | phosphorus-P | Chlorides | Sulfide | solids | solids | cadnitum | copper | chromi um | nickel | | | | mg/l | mg/T | mg/1 | | ing/1 | mg/1 | nig/1 | mg/l | rig/1 | mg/) | | | 820224 (001) | | | | | • | - . | • | • | • | | | | 7-7-80 2255 | 0.04 | 0.09 | 12.0 | | 11 | | | | | | | | 7-8-80 | 0.04 | 0.10 | 12.5 | | 25 | | | | | | | | 820190 (002) | | | | | | | | | | | | | 7-1-80 2230 | 0.04 | 0.14 | 40. | | 16 | 210 | < 0.02 | < 0.02 | < 0.05 | < 0.05 | | | 7-8-80 0900 | 0.05 | 0.14 | 37. | | 16 | 180 | 0.02 | < 0.02 | < 0.05 | < 0.05 | | | 820193 (003) | | | ī. | | | | | | * . • . | | | | 7-7-80 2350 | 0.06 | 0.19 | 140 | | 13 | 380 | < 0.02 | < 0.02 | < 0.05 | < 0.05 | | | 7-8-80 0945 | 0.07 | 0.17 | 149 | - | 14 | 410 | < 0.02 | < 0.02 | < 0.05 | < 0.05 | | | 820223 (005) | | | | | - • | | | | **** | | | | 7-7-80 2400 | 0.02 | 0.04 | 5,400 | | 6 | 12,000 | 0.0% | 0.02 | < 0.05 | < 0.05 | | | 7-8-80 1010 | 0.03 | 0.07 | 8,500 | | 19 | 20,000 | 0.04 | 0.04 | < 0.05 | | ö | | 821088 (006) | | | • | | | • | | | | | ۲ | | 7-7-80 2120 | < 0.01 | 0.08 | 18.0 | < 0.01 | 13 | 140 | < 0.02 | < 0.02 | < 0.05 | < 0.05 | | | 7-8-80 1000 | 0.02 | 0.10 | 21 | < 0.01 | 11 | 160 | < 0.02 | < 0.02 | < 0.05 | < 0.05 | | | 820412 (North | Intake) | | | | | | | | | | | | 7-7-80 2215 | 0.03 | 0.07 | 14.7 | | | | < 0.02 | < 0.02 | < 0.05 | < 0.05 | | | 7-8 -80 0845 | 0.03 | 0.09 | 13.1 | | | ' | < 0.02 | < 0.02 | < 0.05 | < 0.05 | | | | Intake) | | | | | | | | | | | | 7-7-80 1550 | | | •- | | 16 | 1 30 | | | | | | | 7-8-80 1115 | •• | | | | 16 | 140 | • | Table | 2 | Analys | es of | arah | samples. | |---|-------|---|------------|--------|------|------------| | | IEVIC | 4 | mine i y a | יט כסי | urav | 3011111223 | | Table 2 Anal | | | | | | | | | | | | | | |--------------------|---------|-------------------------|-----------|--------------|------------|----------|------|---------|------|-------------------|----------|----------|--| | | _ | | Residuall | 0&G | 0&G | | | | | Nitrite & nitrate | Ammonta | Kjeldahl | | | Oate Time | Temp. | _{рн} 1
S.U. | Chlorine | <u> 1.R.</u> | Grav. | COD | TOC | Pheno1 | 8005 | nitrogen | nitrogen | nitrogen | | | | *C | S.U. | mg/T | mg/1 | mg/1 | mg/1 | mg/1 | mg/1 | mg/1 | mg/T | mg/1 | mg/1 | | | 820224 (001) | | | | | | _ | | | | | | | | | 7-7-80 2255 | 23.5 | 7.7 | ប | | | . 8 | 2.3 | | | 0.36 | 0.20 | 0.44 | | | 7-8-80 0825 | 24.0 | 7.7 | u | | | 10 | 3.0 | | | 0.35 | 0.26 | 0.58 | | | 820190 (002) | | | | _ | _ | _ | | | | | | | | | 7-7-80 2230 | 33.5 | 7.8 | T | 1 | < 2
< 2 | 7 | 2.2 | | | 0.43 | 0.22 | 0.51 | | | 7-8-80 0900 | 34.0 | 8.0 | 0.34 | ì | < 2 | 18 | 2.7 | | | 0.33 | 0.30 | 0.71 | | | 820193 (0u3) | | | _ | | | | | | | | | | | | 7-7-80 1430 | | | 1.05 | | | | | | | | ~- | | | | 7-7-80 2350 | 26.0 | 7.7 | 1.10 | 2 | < 2 | 11 | 2.4 | | | 0.46 |
0.67 | 1.0 | | | 7-8-80 0945 | 26.5 | 8.0 | 0.90- | 1 | < 2 | 13 | 2.6 | | | 0.45 | 0.68 | 1.1 | | | 820223 (005) | | | | | | | | | | | | | | | 7-7-80 2400 | 27.0 | 7.9 | Ų | < 1 | < 2 | Int. | 1.4 | | | 0.32 | 0.15 | 0.44 | | | 7-8-80 1010 | 30.0 | 8.0 | ย | < 1 | < 2 | Int. | 1.9 | | | 0.34 | 0.24 | 0.92 | | | 821088 (006) | | | | | | | | | | | | | | | 7-7-80 2120 | 28.0 | 8.6 | U | 9
3 | 14 | 45
32 | 11. | < 0.005 | 13. | 0.35 | 0.38 | 1.4 | | | 7-8-80 1000 | 29.0 | 8.7 | U | 3 | 2 | 32 | 6.6 | 0.021 | 8.8 | 0.38 | 0.55 | 1.5 | | | | Intake) | | | | | | | | | _ | | | | | 7-7-80 2215 | 21.5 | 7.7 | | 1 | < 2
2 | 10 | 2.3 | | 3.3 | 0.30 | 0.25 | 0.49 | | | 7-8-80 0845 | 22.0 | 7.7 | ~~ | 4 | 2 | 11 | 2.8 | | 4.8 | 0.29 | 0.33 | 0.63 | | | | Intake) | | | | | | | | | | | | | | 7-7-80 1550 | 20.0 | 8.0 | Ť | < 1 | < 2 | 11 | 2.3 | | | | | | | | 7-8-80 0745 | 20.5 | 7.6 | Ţ | | | | | | | | | | | | 7-8-80 1115 | 20.5 | 8.0 | Ţ | < 1 | < 2 | 10 | 2.6 | | | | | | | ^{1 -} Values determined in the field at time of sampling. U - Undetected T - Trace amount present - actual concentration less than 0.2 which is the quantifiable amount. Int. - Interference Table 2 (continued) | Date Time
820190 (002) | Total
lead
mg/T | Total
zinc
mg/l | Total
1ron
mg/l | Total
mercury
mg/l | A-1242
PCB
Ug/1 | A-1254
PCB
ug/T | A-1260
PCB
WJ/T | HCB
Ug/T | DCP
ug/T | HCBD
ug/T | DCB
ug/1 | PCP
ug/ | 2,4,6,
TCP
ug/1 | • | |------------------------------|-----------------------|-----------------------|-----------------------|--------------------------|-----------------------|-----------------------|-----------------------|-------------|-------------|--------------|-------------|------------|-----------------------|---| | 7-7-80 2230 | < 0.05 | < 0.05 | 0.65 | | | •• | | | | < 0.1 | < 0.1 | f† | * | | | 7-8-80 0900
820193 (003) | < 0.05 | < 0.05 | 0.91 | •- | •• | •- | | < 0.1 | < 0.1 | < 0.1 | < 0.1 | T | < 0.1 | | | 7-7-80 2350 | | . 0.05 | 0.70 | +~ | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | | < 0.1 | | < 0.1 | | | 7-8-80 0945
820223 (005) | 0.014 | < 0.05 | 0.84 | •- | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | 7 | < 0.1 | | | 7-7-80 2400 | < 0.005 | | 0.35 | •• | < 0.1 | < 0.1 | < 0.1 | | < 0.1 | | < 0.1 | Ţ | 0.7 | | | 7-8-80 1010
821088 (006) | < 0.005 | < 0.05 | 1.0 | •• | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | T | 0.1 | | | | < 0.005 | | 0.50 | | ~- | | ~~ | | | | | | | | | 7-8-80 1000
820412 (North | < 0.005 | < 0.05 | 0.76 | | •- | | | | | | | | | = | | 7-7-80 2215 | < 0.05 | 0.10 | 0.54 | | •• | | | | | ~- | | | | | | 7-8-80 0845 | < 0.05 | < 0.05 | 0.34 | •• | | | | •- | | | | | | | | | Persistant Chlorinated
Hydrocarbons | 1,2. Di Chlorinated Propane | Chloroform | Aliphatic
amines | нср | Other
C1-Phenols | Other C1 +
Br VHC | |-----------------------------|--|-----------------------------|------------|---------------------|-------|---------------------|----------------------| | 820190 (002) | ug/1 | ug/1 | ug/1 | ug/1 | ug/T | ug/1 | ug/1 | | 7-7-80 2230 | u | 3 3 ° | ś | | < 0.1 | U | •• | | 7-8-80 0900 | Ŭ | 33 | ž | | ₹ 0.1 | ŭ | U
II | | 820193 (003) | | •• | <i>f</i> . | | | • | • | | 7-7-80 2350
7-8-80 0945 | U
13 | 13
10 | • | | < 0.1 | Ü | U | | 820223 (005) | · · |)
} | 3 | | < 0.1 | U | U | | 7-7-80 2400 | Ų | <u>\$</u> | 4 | | < 0.1 | U | U | | 7-8-80 1010
821088 (006) | บ | 7 | ,8 | | < 0.1 | Ű | ŭ | | 7-8-80 1000 | | | | < 100 | | | | | 7-8-80 1405 | | | | < 100 | | | | Table 3 Comparison of survey results with the facility's NPDES Permit and Monthly Operating Report. | Parameter (Unit) | NPDES Per
Limit | mit Final | | uly Monthly | Operating F | Report | Survey Results 1 | | |---------------------------------|--------------------|-----------|----------|-------------|-------------|----------|-------------------|----| | | Daily | Daily | Monthly | | | | | - | | | Average | Maximum | | Maximum | 7-7-80 | 7-8-80 | | | | 820409 (Intake) | | | | | | | | | | Suspended solids (mg/l) | | | 70 | 115 | 60 | 52 | (16, 16) | | | Chlorides (mg/l) | | | 18 | 24 | | 16 | 13.5 | | | COD (mg/1) | | | 24 | 49 | 32 | | 9 (11, 10) | | | Total iron (mg/l) | | | 2.31 | 2.78 | | | 0.21 | | | 800s (mg/1) | | | 3.3. | Ā | | 1 | | | | 820224 (001) | | | • | - | | • | | | | Flow (M3/day) | | | 24,000 | 27,000 | 22,000 | 22,000 | 21,500 | | | Suspended solids (mg/l) | | | 30 | 68 | | 13 | 14 (11, 25) | | | Ammonia nitrogen (mg/l) | | | 0.10 | 0.25 | 0.25 | | 0.23 (0.20, 0.26) | | | Chlorides (mg/l) | | | 17 | 19 | 18 | | (12.0, 12.5) | 7- | | | | | 12 | 17 | | 17 | | ì | | COD (mg/1) | · · · · · · · · | | | 8.1. | 7.8 | | 7 (8, 10) | | | pH (S.U.) | not <6.5 | _ | min. 7.7 | | | | (7.7, 7.7) | | | Residual chlorine (mg/l) | | •- | ,0.0 | 0.0 | | ,0.0 | (0, 0) | | | Temperature (°C) | | ~- | 18 | 30 | | 15 | (23.5, 24.0) | | | 820190 (002) | | | | | | | | | | Flow (M3/day) | | | 56,400 | 62,100 | | 56,400 | 55,400 | | | Total suspended solids (kg/day) | | 1,687 | 1,833 | 9,543 | 9,543 | 507 | 830 | | | Ammonia nitrogen (mg/l) | 1.4 | 2.3 | 0.12 | 0.75 | | | 0.24 (0.22, 0.30) | | | Chlorides (mg/l) | | ~- | 30
22 | 52 | | 31 | 36. (40., 37) | | | COD (mg/1) | | ~- | 22 | 71 | 71 | | 9 (7, 18) | | | Total lead (kg/day) | 0.6 | 1.25 | 0.36 | 0.467 | | | •• | | | Residual chlorine (mg/l) | 1.0 | 1.5 | 0.13 | 0.82 | 0.30 | 0.00 | (T, 0.3) | | | Temperature (°C) | | | 34 | 37 | 33 | 33 | (33.5, 34.0) | | | pH (S.U.) | not <6.5 | nor >9.5 | | 10.6 | High 10.2 | High 9.6 | (7.8, 8.0) | | | ,, | | | | | LOW 7.0 | Low 7.4 | (112) | | ¹ - Survey results are for the composite sample. Grab sample ranges are shown in parentheses ($\,$). T - Trace U - Undetected To obtain MGD multiply M3/day by 0.0002642 To obtain lbs/day multiply kg/day by 2.205 Table 3 Comparison of survey results with the facility's NPDES Permit and southly Operating Report (continued). | | NPUES Pers | it Final | | | | | • | |-----------------------------|------------|-----------|---------|------------|-------------|----------|--------------------------| | Parameter (Unit) | Limita | tions | | ly Monthly | Operating R | leport | Survey Results! , | | | Daily | Daily | Monthly | Monthly | | | | | | Average | Max incer | Average | Maximum | 7-7-80 | 7-8-80 | | | 820193 (003) | | | | | | | | | Flow (M3,day) | | | 23,700 | 25,000 | 23,000 | 23,000 | (23,200) | | Total susp. solids (kg/day) | 384 | 768 | 483 | 877 | 415 | 399 | 300 | | Ammonia nitrogen (mg/l) | 3 | 5 | 0.08 | 0.88 | | 0.88 | 0.64 (0.61, 0.68) | | Total copper (mg/1) | | 1.0 | 0.016 | | | | < 0.02 (<0.02, <0.02) | | Total lead (kg/day) | 0.45 | 0.9 | 0.34 | 0.476 | | | 0.2 | | Total iron (mg/l) | | 1.6 | 1.733 | 2.060 | | | 0.78 (0.70, 0.84) | | Residual chlorine (mg/l) | 1.0 | 1.5 | 0.18 | 0.85 | 0.14 | 0.70 | (1.05, 1.10, 0.90) | | Chlorides (mg; 1) | | | 146 | 167 | | 149 | 148 (140, 149) | | Temperature (°C) | | | 27 | 32 | 26 | 26 | (26.0, 26.5) | | pH (S.U.) | not <6.5 n | or >9.5 | | 10.0 | High 8.7 | High 8.5 | (7.7, 8.0) | | | | | | min. 6.4 | Low 7.9 | Low 7.1 | μ | | 820223 (005) | | | | | | | | | Flow (M3/day) | | | 6,800 | 7,600 | 6,100 | 6,100 | 4,340 | | Total susp. solids (mg/l) | 35 | 70 | 30 | 358 | 7 | 10 | 27 (6, 19) | | Total susp. solids (kg/day) | 212 | 425 | 200. | 2,434 | 42 | 60 | 120 | | COD (kg/day) | | 821 | 59 | 221 | 130 | | Int. | | Ammonia nitrogen (mg/l) | 1.0 | 1.5 | 0.36 | 1.38 | | 0.62 | 0.18 (0.15, 0.24) | | Chlorides (mg/l) | | | 6,836 | 9,372 | | 7,480 | 7,500 (5,400, 8,500) | | Total lead (mg/1) | 0.1 | 0.2 | 0.008 | 0.010 | | | < 0.005 (<0.005, <0.005) | | Total lead (kg/day) | 0.6 | 1.2 | 0.050 | 0.054 | | | | | Temperature (°C) | | | 27 | 31 | 20 | 27 | (27.0, 30.0) | | Residual chlorine (mg/l) | 1.0 | 1.5 | 0.00 | 0.05 | 0.00 | 0.00 | (U, U) | | pH (S.U.) | not <6.5 n | or >9.5 | | 12.4 | High 8.8 | High 8.6 | (7.9, 8.0) | | • | | | | min. 2.7 | Low 7.8 | Low 7.5 | | $^{{\}tt l}$ - Survey results are for the composite sample. Grab sample ranges are shown in parentheses (). Int - Interference Table 3 Comparison of survey results with the facility's NPDES Permit and Monthly Operating Report. (continued) | Parameter (Unit) | Limi | rmit Final | | ly Monthly | Operating R | leport | Sur | vey Results ? | _ | |-----------------------------|----------|-------------|---------|------------|-----------------|----------|--------|----------------|----------| | | Daily | Daily | Monthly | Monthly | | | | | | | | Average | Maximum | Average | Maximum | 7 <i>-</i> 7-80 | 7-8-80 | | | | | <u>821088 (006)</u> | | | | | | | | | | | Flow (M3/day) | | | 26,000 | 33,000 | 33,000 | 32,000 | 32,500 | | | | BODs (kg/day) | 173 | 259 | 146 | 606 | | 95 | 490 | | | | COO (mg/1) | | | 13 | 36 | | 16 | 37 (4 | 15, 32} | | | Total susp. solnet (kg/day) | 173 | 259 | 1,778 | 2,270. | | 1,650 | ` | • • | | | Chlorides-net (kg/day) | | 4,000 | 260. | 722 | | 223 | 160 | | | | Ammonia nitrogen (mg/l) | 1.5 | 3.0 | 0.42 | 1.80 | 0.30 | | 0.46 | (0.38, 0.55) | | | Ammonia nitrogen (kg/day) | | 114 | 12.6 | 58.47 | 9.75 | | 15 | | | | Phenol (mg/l) | | 0.2 | 0.02 | 0.02 | | 0.02 | 0.009 | (<0.005, 0.02) | 1) | | Phenol (kg/day) | | 4.5 | 0.508 | 0.671 | • | 0.649 | 0.3 | (0.000, 0.02 | • , | | Sulfide (mg/1) | | | 0.0 | 0.0 | | •• | < 0.01 | | ٠, | | Total zinc (mg/1) | | 1.0 | 0.015 | 0.020 | | | < 0.05 | | <u>=</u> | | Temperature (°C) | | | 26 | 28 | 26 | | | (28.0, 29.0) | • | | Residual chlorine (mg/l) | | 0.5 | 0.01 | 0.10 | 0.00 | | | (U, U) | | | pH (S.U.) | not c6 | 5 nor >9.5 | | | High 8.6 | High 8.2 | | (8.6, 8.7) | | | p (3.07) | 1100 10. | 3 1101 73.3 | | m1n. 7.2 | Low 7.7 | Low 7.6 | | (0.0, 0.7) | | | Total Combined Outfalls | | | | m / . L | | COR 7.0 | | | | | Chlorides (kg/day) | | 227,000 | 44,800 | 63,900 | | 49,100 | 38,000 | | | $[{]f 1}$ -
Survey results are for the composite sample. Grab sample ranges are shown in parentheses (). U - Undetected U - Undetected To obtain MGD multiply M³/day by 0.0002642 To obtain lbs/day multiply kg/day by 2.205 To obtain MGO multiply M³/day by 0.0002642 To obtain lbs/day multiply kg/day by 2.205 Table 4 Corparison of the laboratory analytical results obtained by Pennwalt Chemical Corporation - Wyandotte and the Environmental Protection Bureau from the split composite samples. | • | | | | | |---|--|---|-------------------------------------|--| | Outfalls | 820224 | (001) | 820190 | (002) | | | Pennwalt
mg/l | E.P.B.
mg/1 | Pennwalt
mg/l | E.P.B. | | Suspended solids
Amonia nitrogen
CCD
Chlorides
Lead (Pb) | 16.0
0
1.0 | 14
0.23
7 | 14.7
0
7.0
39.5
0.0030 | 15
0.24
9
36
9 < 0.05 | | Putfalls | 820193 | (003) | 820223 | (005) | | _1 | Pennwalt
mg/l | E.P.B. | Pennwalt
mg/l | E.P.B. | | Suspended solids | 17.5 | 13 | 17.5 | 27 | | Amonia nitrogen-N
CCO
Chlorides
Cosper
Lead
Iron | 0
149.5
0.0069
0.0045
0.77 | 0.64

148
03 <0.02
6 0.009
0.78 | 0
5.2
7,117.4

0.0124 | 0.18
Interference
7,500

< 0.005 | | , | 821088 | (006) | 820412 | (Intake) | | | Pennwalt
mg/l | E.P.B.
mg/1 | Pennwalt
mg/l | E.P.B. | | Suspended solids | 3.5 | 8 | 8.7 | 6 | | Arronia nitrogen-N
EID5
CCI
Chlorides
Sulfide
enol
nc | 0.7
16.2
36.0
25.2
0
< 0.020
0.021 | 0.46
15
37
21
< 0.01
0.009
< 0.05 | 3.6
10.9
48.1

0.37 | 3.5
9
26

0.52 | | Outfalls | 820224 | (001) | 820190 (| 002) | |---------------------------------|-------------|--------|-------------|---------| | Survey Date From | 11-6-78 | 7-7-80 | 11-6-78 | 7-7-80 | | To | 11-7-78 | 7-8-80 | 11-7-78 | 7-8-80 | | Flow Rate (M ³ /day) | 19,000 | 21,500 | 42,500 | 55,400 | | | <u>mg/1</u> | mg/1 | <u>mg/1</u> | mg/1 | | Suspended solids | 25 | 14 | 14 | 15 | | Dissolved solids | 170 | 160 | 200 | 200 | | COD | 26 | 7 | 9 | 9 | | Pheno1 | < 0.01 | 0.007 | 0.03 | < 0.005 | | Nitrite & nitrate nitrogen-N | 0.35 | 0.36 | 0.32 | 0.32 | | Ammonia nitrogen-N | 0.39 | 0.23 | 0.32 | 0.24 | | Total phosphorus-P | 0.22 | 0.07 | 0.07 | 0.09 | | Chlorides | | | 30 | 36 | | Total lead (Pb) | | | < 0.005 | < 0.05 | | Total zinc (Zn) | | | 0.048 | < 0.05 | | Total Iron (Fe) | 1.3 | 0.76 | 0.72 | 0.77 | | Table 5 (continued) | | | | | |---------------------------------|-------------|-------------|---------|--------------| | Outfalls | 820193 (| (003) | 820223 | (005) | | Survey Date From | 11-6-78 | | | 7-7-80 | | To | 11-7-78 | 7-8-80 | 11-7-78 | 7-8-80 | | Flow Rate (M ³ /day) | 22,400 | 23,200 | 4,700 | 4,340 | | | <u>mg/1</u> | <u>mg/1</u> | mg/1 | mg/1 | | Suspended solids | 19 | 13 | 32 | 27 | | Dissolved solids | 390 | 390 | 64,000 | 16,000 | | רריז | 14 | 11 | 20 | Interference | | | < 0.01 | 0.007 | < 0.01 | < 0.005 | | Mitrite & mitrate mitrogen-N | 0.38 | 0.47 | 0.71 | 0.41 | | Arronia nitrogen-N | 2.9 | 0.64 | 0.65 | | | Total phosphorus-P | 0.16 | 0.17 | 0.22 | 0.05 | | Chlorides | 136 | 148 | 32,000 | 7,500 | | Total chromium (Cr) | | | 0.000 | 5 < 0.05 | | Total copper (Cu) | 0.020 | < 0.02 | 0.003 | 0.03 | | Total nickel (Ni) | | | +- | | | Total lead (P5) | 0.009 | 0.009 | < 0.009 | 5 < 0.005 | | Total zinc (Zn) | | | < 0.00 | 5 < 0.05 | | Total iron (Fe) | 1.2 | 0.78 | 0.01 | 7 0.59 | | | | | | | | Table 5 (Continued) | | | | | |--|--------------------------------|---------------------------|--------------------------------|-----------------------------| | Outfalls
Survey Date From
To | 821088 (
11-6-78
11-7-78 | (006)
7-7-80
7-8-80 | 820412 (
11-6-78
11-7-78 | Intake)
7-7-80
7-8-80 | | Flow Rate (M ³ /day) | 29,000 | 32,500 | | | | | <u>mg/1</u> | <u>mg/1</u> | mg/1 | <u>mg/1</u> | | Suspended solid:
Dissolved solids | 15
570 | 8
160 | 12
160 | 6
400 | | COD | 47 | 37 | 10 | 9 | | Pheno1
Sulfide (S) | 0.15
0.05 | 0.009
< 0.01 | •• | | | BO05 | 33 | 15 | 4.3 | 3.5 | | Nitrite & nitrate nitrogen-N
Ammonia nitrogen-N
Total phosphorus-P | 0.33
0.65
0.10 | 0.34
0.46
0.08 | 0.28
0.39
0.07 | 0.30
0.27
0.08 | | Chlorides | 28 | 21 | 22 | 26 | | Total lead (Pb)
Total zinc (Zn)
Total iron (Fe) | < 0.005
0.040
9.2 | < 0.005
< 0.05
0.57 | 0.009
0.31 | < 0.05
0.52 | Table 6 Sample Preservation Cistribution "A" All samples cooled to 4°C and preserved upon collection and chain of custody raintained. Sulfides Oil & Grease Total Metals Parameter Phenols (Chlorine present) CCD/TOC/phenol (Chlorine absent) Physical, Chemical & Bacteriological Analyses by: & base-neutral extractables Contact with Management: Hydrocarbon Analyses by: Report by: Survey by: : Gary Boersen William Erickson Point Source Studies Section Environmental Services Division Environmental Protection Bureau Michigan Dept. of Natural Resources Environmental Protection Bureau Laboratory John Lewis. Supervisor of Environmental Control Gary Boersen, Environmental Engineer Elizabeth Browne, Water Quality Technician William Erickson, Water Quality Technician Environmental Protection Bureau Laboratory Tom Overgaard, Senior Chemist - East Plani Chuck Talcot, Lab Supervisor - West Plant Bruce Walker, Water Quality Technician Guntis Kalejs, Water Quality Technician Dechlorinated (if needed) with sodium thiosulfate (1 drop 0.141 N/mg/l $Cl_2/250$ ml). 2 ml 1:1 HNO3/250 ml (to pH <2). 10 drops conc. H₂SO₄/250 ml (to pH <2). 10 drops 1M ZnAc/250 ml. 10 drops conc. H₂SO₄/250 ml (to pH <2) Dechlorinated w/ferrous ammonium sulfate (0.141 N) Preservative drop/mg/1 Cl₂/250 ml. H₂SO₄ to pH <2. & Certified Operator East Plant | | U. S. ENVIRONMENTAL PRO
OFFICE OF PESTICIDES AND
CHEMICAL INFORMATIO | TOXIC SUBSTANCES | 7/18/1980 | | |---------------------------------|--|--|-----------|--------------| | PENNUALT CORPORATION | (001283Z) | | | | | 4655 BIDDLE AVENUE
WYANDOTTE | MI 48192 | | | | | 75-04-7 Ethana | amine
FACTURER | | | | | 75-31-0 2-Pro
MANUI | panamine
FACTURER | | | | | | FACTURER | EN MILLION POUNDS | | | | | 1, 4-(1,1-dimethylpropyl)-
FACTURER | | | | | | modithioic acid, diethyl-, 2-
FACTURER | -benzothiazolyl ester | | | | | • | | | | | | ol, 2-[bis(1-methylethyl)amin
FACTURER | | | . | | | | | | - | | | eroxydicarbonic diamide, tet:
FACTURER | raethyl- | | | | | ol, 2-(diethylamino)
FACTURER | | | | | | | and the second s | | | . 102-69-2 1-Propanamine, N,N-dipropyl-MANUFACTURER | | OFFICE OF PESTICIDES AN | | 7/18/1980 | |-------------------|---|---------------------------------------|---------------------------------------| | PENNHALI CORPORAT | ION(001283Z) | | | | | _Ethanol, 2,2'-(butylimino)bis-
MANUFACTURER | | · · · · · · · · · · · · · · · · · · · | | 102-81-8 | Ethanol, 2-(dibutylamino)-
MANUFACTURER | | | | 102-82-9 | 1-Butanamine, N,N-dibutyl-
MANUFACTURER | · · · · · · · · · · · · · · · · · · · | | | 102-86-3 | 1-Hexanamine, N,N-dihexyl-
MANUFACTURER | · | | | | Thiourea, N.N'-diethyl-
MANUFACTURER | | , | | 105-59-9 | Ethanol, 2,2'-(methylimino)bis-
MANUFACTURER | | | | 107-10-8 | 1-Propanamine MANUFACTURER | | | | | Ethanol, 2-(dimethylamino)-
MANUFACTURER | | • | | 108-09-8 | 2-Pentanamine, 4-methyl-
MANUFACTURER | | | | 108-16-7 | 2-Propanol, 1-(dimethylamino)-
MANUFACTURER | | | | | | | | | | | | | | U. S. ENVIRONMENTAL
PROTECTION OFFICE OF PESTICIDES AND TOXIC | | |--|--| | CHEMICAL INFORMATION DIVI | KOISION | | (NWALT_CORPORATION (001283Z) | | | 108-18-92-Propanamine, N-(1-methylethyl)-
MANUFACTURER | | | | The state of s | | 109-46-6Thiourea, N.N'-dibutyl-
MANUFACTURER | | | | | | 109-56-8 Ethanol, 2-[(1-methylethyl)aminol-
MANUFACTURER | | | | | | . 109-73-9 1-Butanamine MANUFACTURER . | | | | • | | | | | | | | 109-89-7 Ethanamine, N-ethyl-
MANUFACTURER | | | 110-58-7 1-Pentanamine | | | MANUFACTURER | | | 110-73-6 Ethanol, 2-(ethylamino)-
MANUFACTURER | | | | | | 110-77-0 Ethanol, 2-(ethylthio)-
MANUFACTURER | | | 111-26-2 1-Hexanamine | | | MANUFACTURER | • | | | | | | · | | and the second s | | and the second s | | OFFICE OF PESTICIDES AND TOXIC SUBST | TANCES 7/18/1980 | |-------------------|---|---------------------------------------| | PENNWALT CORPORAT | ION(001283Z) | | | 111-92-2 | 1-Butanamine, N-butyl- MANUFACTURER | · · · · · · · · · · · · · · · · · · · | | 120-95-6 | Phenol, 2,4-bis(1,1-dimethylpropyl)- MANUFACTURER | | | 121-44-8 | Ethanamine, N,X-diethyl- MANUFACTURER | • • • • • • • • • • • • • • • • • • • | | , | Ethanol, 2,2'-[(1-methylethyl)iminolbis-
MANUFACTURER | • | | 123-82-0 | | | | . 124-63-0 | Methanesulfonyl chloride
MANUFACTURER | | | | Carbamodithioic acid, dimethyl-, sodium salt
MANUFACTURER
1977 PRODUCTION OF 1 MILLION TO TEN MILLION | POUNDS | | 136-23-2 | Zinc, bis(dibutylcarbamodithioato-S,S')-, (T
MANUFACTURER | -4)- | | 137-26-8 | Thioperoxydicarbonic diamide, tetramethyl-MANUFACTURER | | | 137-30-4 | Zinc, bis(dimethylcarbamodithioato-S,S')-, (| I-4)- | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | . $(\mathbf{x}_{i}) = \mathbf{x}_{i} \mathbf{x}_{i} + \mathbf{x}_{i} \mathbf{x}_{i} + \mathbf{x}_{i} \mathbf{x}_{i} + \mathbf{x}_{i} \mathbf{x}_{i} \mathbf{x}_{i} + \mathbf{x}_{i} \mathbf{x}_{i$ | | U. S. ENVIRONMENTAL PROTECT
OFFICE OF PESTICIDES AND TOXI
CHEMICAL INFORMATION DI | IC SUBSTANCES | |---------------|---|--| | WALT CORPORAT | TION (001283Z) | <u>.</u> | | 139-87-7 | Ethanol, 2,2'-(ethylimino)bis-
MANUFACTURER | | | | | | | 140-82-9 | Ethanol, 2-[2-(diethylamino)ethoxy]- MANUFACTURER | | | | | e processor de la companya de la co
La companya de la co | | 142-84-7 | 1-Propanamine, N-propyl- MANUFACTURER | | | 143-16-8 | 1-Hexanamine, N-hexyl- MANUFACTURER | | | | MARGIACIORER | | | 148-18-5 | Carbamodithioic acid, diethyl-, sodium | | | | HARDIACIORER | · | | 513-49-5 | 2-Butanamine, (S)- MANUFACTURER | | | 621-77-2 | 1-Pentanamine, N,N-dipentyl- | | | | MANUFACTURER | | | | | | | 1310-73-2 | Sodium hydroxide MANUFACTURER 1977 PRODUCTION OF 100 MILLION TO 500 | 0 MILLION POUNDS | | 1333-74-0 | Hydrogen
MANUFACTURER
1977 PRODUCTION OF 100 MILLION TO 500 | | | 1561-75-7 | Disulfide, dihexadecyl MANUFACTURER | | | | | · · · · · · · · · · · · · · · · · · · | · . | | | · · · · · · · · · · · · · · · · · · · | |-------------------|--|---------------------------------------| | | OFFICE OF PESTICIDES AND TOXIC SUP | AGENCY7/18/1980BSTANCES ON | | PENNWALT CORPORAT | ZION (001283Z) | | | 1704-62 <u>-7</u> | Ethanol, 2-[2-(dimethylamino)ethoxy]-
MANUFACTURER | | | 2386-60-9 | 1-Butanesulfonyl chloride MANUFACTURER 1977 PRODUCTION OF 0 TO 1000 POUNDS | | | 37,10-84-7 | Ethanamine, N-ethyl-N-hydroxy- MANUFACTURER | | | 6088-51-3 | 2-Naphthalenol, 6,6'-dithiobis-
MANUFACTURER | | | | Ethanol, 2,2'-(propylimino)bis-
MANUFACTURER
1977 PRODUCTION OF 0 TO 1000 POUNDS | | | 7440-50-8 | MANUFACTURER | DS | | | Hydrochloric acid MANUFACTURER 1977 PRODUCTION OF FIFTY MILLION TO 100 M | IILLION POUNDS | | 7782-50-5 | Chlorine MANUFACTURER 1977 PRODUCTION OF 100 MILLION TO 500 MIL | LION POUNDS | | 7783-06-4 | Hydrogen sulfide
MANUFACTURER | | | 10043-52-4 | Calcium chloride MANUFACTURER 1977 PRODUCTION OF 100,000 TO 1,000,000 P | POUNDS | | | | | | | · · · | | | | U. S. ENVIRONMENTAL PROTECTION
OFFICE OF PESTICIDES AND TOXIC S
CHEMICAL INFORMATION DIVIS | · · | | |-------------------|--|----------------|---| | PENNWALT_CORPORAT | IION (001283Z) | | | | 12125-02-9 | Ammonium chloride MANUFACTURER 1977 PRODUCTION OF TEN MILLION TO FIFTY | MILLION POUNDS | | | 13360-63-9 | 1-Butanamine, X-ethyl- MANUFACTURER | | | | 13472-30-5 | Silicic acid, tetrasodium salt
MANUFACTURER
1977 PRODUCTION OF TEN MILLION TO FIFTY | MILLION POUNDS | | | 16369-21-4 | Ethanol, 2-(propylamino)- MANUFACTURER | | | | 16721-80-5 | Sodium sulfide MANUFACTURER 1977 PRODUCTION OF 0 TO 1000 POUNDS | | · | | 21035-44-9 | 2-Butanamine, N-ethyl-
MANUFACTURER
1977 PRODUCTION OF 0 TO 1000 POUNDS | | | | 33373-80-7 | Oxazolidine, 2-(trichloromethyl)- MANUFACTURER PRODUCTION OF 1000 TO 10,000 POUNDS | | | | 57883-06-4 | 2-Butanamine, 1-methoxy-, (R)-
MANUFACTURER | | | | | | <u> </u> | · | | | | | | . . • • 4655 BIDDLE AVENUE, WYANDOTTE, MICHIGAN 48192 . (313) 285-9200 December 30, 1980 Mr. Robert J. Courchaine Chief, Water Quality Division Department of Natural Resources Stevens T. Mason Bldg. Box 30028 Lansing, MI 48909 Dear Mr. Courchaine: Listed below by process are the products which remain to be sampled and analyzed as part of Pennwalt's Waste Characterization study. | Process | Product | |---------
---| | 21 | Propylamines Butylamines | | 26 | Diethylthioure a
Ethylbutylthioure a | | 28 | Sodium Hydrosulfide | | 31 | Hexylamines | | 35 | Hexylamines | | 38 | Endothall | | 46 | Methane Sulfonyl Chloride
Methane Sulfonic Acid | | 47 | Dimethylamino-2-propanol Isopropylamingathanols | | Process | Product | |-------------|----------------------------| | Pilot Plant | Hexadecyldisulfide | | | Diethylhydroxylamine | | Building 26 | Sodium Methane Sulfonate | | | Alkylamines and Amylphenol | The following washout has been completed: | rocess | Product | |--------|----------------------| | 45 | Triethylamine | | | Triethylamine Oxide | | | Diethylhydroxylamine | | | Phosphorous - Total | Sincerely, PENNWALT CORPORATION J. E. Rhodes Manager, Technical Department cc: Paul Zugger David Batchelor Roy Schrameck ":R:blw 4655 BIDDLE AVENUE, WYANDOTTE, MICHIGAN 48192 - (313) 285-9200 December 30, 1980 Mr. Robert J. Courchaine Chief, Water Quality Division Department of Natural Resources Stevens T. Mason Bldg. Fox 30028 Lansing, MI 48909 ## Dear Mr. Courchaine: Listed below by process are the products which remain to be sampled and analyzed as part of Pennwalt's Waste Characterization study. | Process | Product | |---------|--| | 21 | Propylamines
Butylamines | | 26 | Diethylthioure a
Ethylbutylthiourea | | 28 | Sodium Hydrosulfide | | 31 | Hexylamines | | 35 | Hexylamines | | 38 | Endothall | | 46 | Methane Sulfonyl Chloride
Methane Sulfonic Acid | | 47 | Dimethylaming -2-propenal Isograppyla is schann's | | Process | Product | |-------------|---| | Pilot Plant | Hexadecyldisulfide
Diethylhydroxylamine | | Building 26 | Sodium Methane Sulfonate Alkylamines and Amylphenol | The following washout has been completed: | Process | Product | |---------|----------------------| | 45 | Triethylamine | | | Triethylamine Oxide | | | Diethylhydroxylamine | | | Phosphorous - Total | Sincerely, PENNWALT CORPORATION J/ E. Khodes Manager, Technical Department co: Paul Zugger David Batchelor Roy Schrameck 2.4574 STATE OF MICHIGAN DEPARTMENT OF MATURAL RESOURCES WATER RESOURCES COMMISSION FEB20 1981 PTE. MOUILLEE S.G. IN THE MATTER OF ABATEMENT OF WATER POLLUTION: Penawalt Corp. Wyandotte, Michigan NPDES PERMIT NO. MI 0002381 FINAL ORDER NG. #### FINAL ORDER OF ABATEMENT - IT IS THE EXPRESS FINDING OF FACT of the Water Resources Commission and the Michigan Department of Natural Resources, that Pennwalt Corporation was issued National Pollutant Discharge Elimination System (NPDES) Permit No. MI 0002381 on June 20, 1975, for its Wyandotte facility in Wyandotte, Michigan. Said Permit was revised March 3, 1976, and again May 21, 1976. - IT IS FURTHER THE EXPRESS FINDING OF FACT of the Water Resources Commission and the Michigan Department of Natural Resources, the Federal Clean Water Act of 1977 (P.L. 95-217), which amended the Federal Water Pollution Control Act amendments of 1972 (P.L. 92-500), and the Michigan Water Resour is Commission Act (Act 245, P.A. 1929 as amended), require that by not letter than July 1, 1977, all discharges to the surfaces waters of the State of Michigan have waste treatment facilities installed and operating, which conform with Dest Practicable Control Technology Currently Available (B.P.C.T.C.A.) as defined by the United States Environmental Protection Agency (U.S. EPA) and any more stringent limitations necessary to meet the water quality standards of the State of Michigan. - IT IS FURTHER THE EXERESS FINDING OF FACT of the Water Resources Commission and the Michigan Department of Natural Resources, that N7DES Permit No. MI 0002381 contained final effluent limitations and a schedule of compliance to achieve those limitations by July 1, 1977. - If IS FUNTHER THE EXPRESS FINDING OF FACT of the Water Resources Commission and the Michigan Department of Natural Resources, that although Pennwalt Corporation complied with portions of the schedule of compliance, the company violated the terms and conditions of NPDES Permit No. MI 0002381 by its continued inability to achieve effluent limitations specified within the permit. - IT IS FURTHER THE EXPRESS FINDING OF FACT of the Water Resources Commission and Michigan Department of Natural Resources, that as a result of these continuing violations, a Final Order of Abatement, Final Order No. 1931 was entered in October 1977. Under provisions of the Final Order, Pennwalt Corporation immediately paid as liquidated damages the sum of one hundred fifty thousand dollars (\$150,000.00) to the general fund of the State of Michigan. Additionally, the Final Order modified the schedule of compliance contained in NPDES Permit No. MI 0002381, allowing an extension of time for achieving compliance to October 1, 1977, for Outfall 002, to April 1, 1978, for Outfalls 003 and 005, and to February 1, 1978, for Outfall 006. - IT IS FURTHER THE EXPRESS FINDING OF FACT of the Water Resources Commission and the Michigan Department of Natural Resources, that Pennwalt Corporation failed to attain the operational level necessary to meet the effluent limitations specified in Final Order No. 1931 in accordance with the schedule outlined therein. - IT IS FURTHER THE EXPRESS FINDING OF FACT of the Water Resources Commission and the Michigan Department of Natural Resources, that under provisions of Final Order 1931, specific to violations of final effluent limitations after required compliance dates, Pennwalt Corporation contemporaneously made payments of liquidated damages totaling an additional one hundred eighty thousand dollars (\$180,000.00). Subsequent violations of the final effluent limitations were violations of the Final Order for which the State could seek other and further relief. - IT IS THE EXPRESS FINDING OF FACT of the Water Resources Commission and the Michigan Department of Natural Resources, that in accordance with Part 5 Rules of the General Rules of the Water Resources Commission that Pennwalt Corporation is required to submit and implement a Pollution Incident Prevention Plan. - IT IS FURTHER THE EMPRESS FINDING OF FACT of the Water Resources Commission and the Michigan Department of Natural Resources, that Pennwalt Corporation submitted a revised Pollution Incident Prevention Plan (PIPP) November 16, 1979 and that said plan included a proposed implementation schedule for construction of additional containment facilities for both the East and West Plants. - IT IS FURTHER THE EXPRESS FINDING OF FACT of the Water Resources Commission and the Michigan Department of Natural Pesources, that the pH limitations contained in the United States Environmental Protection Agency (EPA) promulgated guidelines for the Inorganic Chemical industry subcategory, dated March 12, 1974 and May 22, 1975, are not applicable to the Pennwalt facilities. - IT IS FURTHER THE EXPRESS FINDING OF FACT of the Water Resources Commission and the Michigan Department of Natural Resources, that the Company continuously measures pH at all its process wastewater discharges. - IT IS FURTHER THE EXPRESS FINDING OF FACT of the Water Resources Commission and the Michigan Department of Natural Resources, that the EPA document entitled BACKGROUND DOCUMENT FOR MODIFICATION OF PH EFFLUENT LIMITATIONS GUIDELINES AND STANDARDS FOR POINT SOURCES REQUIRED BY NYDES PERMIT TO MAITTAN CONTINUOUSLY EFFLUENT MI published Hovember 1980 states "PH standards (6.0-9.0) whenever final effluent pH is required to be measured continuously may be beyond the capabilities of BPT and BCT systems." - IT IS FURTHER THE EXPRESS FINDING OF FACT of the Water Resources Commission and the Department of Natural Resources, that, as evidenced by the Company's December 18, 1979, demonstration of their existing pH control facilities, the pH limitations contained in this Final Order are appropriate. - IT IS FURTHER THE EXPRESS FINDING OF FACT of the Water Resources Commission and the Michigan Department of Natural Resources, that compliance with the pH limitations contained in this Final Order will insure full protection of the State's water quality standards and will protect the State's waters against pollution, impairment, or destruction. - IT IS AGREED BY ALL PARTIES, the Department of Natural Resources, the Water Resources Commission, and Pennwalt Corporation, that in the absence of effective guidelines for pH, it is the judgment of the parties that the pH control facilities installed by the Company constitute Best Practicable Control Technology Currently Available (B.P.C.T.C.A.). The parties also recognize that the United States Environmental Protection Agnecy (EPA) has neither made a final determination on this issue nor authorized the inclusion of the pH limitations contained herein in a revised NPDES permit for Pennwalt, and that a final determination by EPA on this issue may require modification of this Final Order or the NDPES permit. In this event, either party may seek such modification. - IT IS FURTHER THE EXPRESS FINDING OF FACT of the Water Resources Commission and the Michigan Department of Natural Resources, that the Company has reviewed this Consent Order and while neither admitting nor denying that litigation of the issues would have resulted in a finding of the violations referred to in this Order or award of the damages set forth in this Order, has agreed to its entry as a Final Order of the Water Resources Commission. - IT IS THEREFORE ORDERED that Final Order of Abatement No. 1931 entered on October 14, 1977 is hereby rescinded. - IT IS FURTHER ORDERED that NPDES Permit No. MI 0002381 issued on June 20, 1975, as subsequently revised, is in full force and effect except that compliance with Section A of this Final Order constitutes compliance with Part I, Section A of the NPDES permit until NPDES Permit No. MI 0002381 is reissued, suspended, rescinded
or revoked. ## SECTION A EFFLUENT CONDITIONS AND MONITORING REQUIREMENTS IT IS FURTHER ORDERED that Pennwalt Corporation shall comply with the following restrictions and conditions: ### 1. Final Effluent Limitations During the period beginning on the effective date of this Final Order and lasting until the expiration of authorization under this Final Order, the permittee is authorized to discharge up to a maximum of eight million one hundred thousand (8,100,000) gallons per day of noncontact cooling water from Outfall 001. Such discharge shall be limited and monitored by the permittee as specified below: | | Discha
kg/day (1 | rge Limita | otions
Other Lin | nitations | Monitoring Re | equirements | |--|---------------------|------------------|---------------------|------------------|---------------------------------|-----------------------| | Effluent Characteristics Flow, M / Day (NO | Monthly
Average | Daily
Maximum | Monthly
Average | Daily
Maximum | Measurement Frequency 3x Weekly | Sample
Type | | Total Suspended | Solids | | | | Weekly | Grab | | Total Residual C | hlorine | | | | Weekly | Grab | | Ammonia (as N) | | | | | Weekly | Grab | | Chlorides | | | | | Weekly | Grab | | Oil & Grease | | | No Visibl | e Fil:n | Daily | Visual
Observation | | Temperature | | | | | Weekly | Reading | | COD | | | | | Weckly | Grab | The term noncontact cooling water shall mean water used for cooling which does not come into direct contact with any raw material, intermediate product, by product, waste product, or finished product. - a. The pH shall not be less than 6.0 nor greater than 9.0. The pH shall be monitored as follows: weekly; grab. - b. The discharge shall not cause excessive foam in the receiving waters. The discharge shall be essentially free of floating and settleable solids. - c. The discharge shall not contain oil or other substances in amounts sufficient to create a visible film or sheen on the receiving waters. - d. Samples taken in compliance with the monitoring requirements above shall be taken at Outfall OOl prior to discharge to Wye Street storm sewer. - e. In the event the permittee shall require the use of Water Treatment additives the permittee shall notify the Michigan Water Resources Commission in accordance with the requirements of Part II, Section A-1 of NPDES Permit No. M1 0002381. ## 2. Final Effluent Limitations During the period beginning on the effective date of this Final Order and lasting until the expiration of authorization under this Final Order, the permittee is authorized to discharge up to a maximum of seventeen million nine hundred thousand (17,900,000) gallons per day of contact cooling water, process water, and noncontact cooling water from Outfall 002. Such discharge shall be limited and monitored by the permittee as specified below: | | Discharge | Limitatio | ns | | | |---|---------------------|-----------|----------------------|---------------------------------|--| | | kg/day (lbs/day) | Other Lin | itations | Monitoring Re | quirements | | Effluent | Monthly Daily | Monthly | Daily | Measurement | Sample | | Characteristic | Average Maximum | Average | Maximum | Frequency | Type | | Flow, M /Day (| MGD) | | | 3x Weekly | | | | | | | | | | Chlorides | | | | 3x Weekly | 24 Hr. Comp. | | | | | | | | | Oil & Grease | | No Visibl | e Film | Daily | Visual | | | | | | | Observation | | | • | • | | _ | | | Temperature | | | | Daily | Reading | | 44.5 | | | | | 0/ 11 0 | | COD | | | | 3x Weekly | 24 Hr. Comp. | | mara 1 Commanda | | | | | | | Total Suspende | | 02) | | Eng. IV and all as | Carak | | Soilas | 4103(9046) 6206(160 | 94) | | эк мескту | Grab | | Ammonia (as N) | | 1 / ma/1 | 2 3 mg/1 | 3x Wookly | 24 Hr Comp | | Authorita (as N) | | 1.7 mg/1 | 2.5 mg/1 | . Ja Heekly | 24 nr. comp. | | Total Residual | Chlorine | 1.0 mg/1 | 1.5 mg/1 | Daily | Grab | | local Mesidual | on tot the | L.C mg/I | 1.2 mg/1 | Durij | 0140 | | Total Lead | 0.6(1.37) 1.25(2.75 | | | Twice Monthly | 24 Hr. Comp. | | Solids Ammonia (as N) Total Residual Total Lead | | 1.4 mg/1 | 2.3 mg/l
1.5 mg/l | 5x Weekly Daily Twice Monthly | Grab 24 Hr. Comp. Grab 24 Hr. Comp. | The term noncontact cooling water shall mean water used for cooling which does not come into direct contact with any raw material, intermediate product, by-product, waste product, or finished product. - a. The pN shall be within the range of 6.0 to 9.5, 90% of the time; within the range of 5.0 to 10.0, 95% of the time; within the range of 3.0 to 11.0, 99% of the time; within the range of 2.0 to 12.0, 100% of the time during a 24 hour period beginning on or about 7:00 a.m. of each day. The pH shall be monitored as follows: continuous; report the maximum and minimum and percent of time within each range during the above 24 hour period. - b. The discharge shall not cause excessive foam in the receiving waters. The discharge shall be essentially free of floating and settleable solids. - c. The discharge shall not contain oil or other substances in amounts sufficient to create a visible film or sheen on the receiving waters. - d. Samples taken in compliance with the monitoring requirements above shall be taken at Outfall 002 prior to discharge to the Detroit River. - e. In the event the permittee shall require the use of Water Treatment additives, the permittee shall notify the Michigan Water Resources Commission in accordance with the requirements of Part II, Section A-1 of NFDES Permit No. MI 0002381. ### 3. Final Effluent Limitations During the period beginning on the effective date of this Final Order and lasting until the expiration of authorization under this Final Order, the permittee is authorized to discharge up to a maximum of nine million eight hundred thousand (9,800,000) gallons per day of contact cooling water, process water, including waste water from the cell room, and noncontact cooling water from Outfall 003. Such discharge shall be limited and monitored by the permittee as specified below: | | | | e Limitatio | | | |-------------------------------|-----------------------------------|----------|-------------|---------------|-----------------------| | Effluent | kg/day (1bs/day)
Monthly Daily | | nitations | Monitoring Re | | | | • | Monthly | | Measurement | Sample | | Characteristics | Average Maximum | Average | Maximum | Frequency | <u>Type</u> | | Flow, M ³ /Day (MG | D) | • | | 3x Weekly | | | Chlorides | | | | 3x Weekly | 24 Hr. Comp. | | Oil & Grease | | No Visib | le Film | Daily | Visual
Observation | | Temperature | | | | Daily | Reading | | Total Suspended | | | | | | | Solids | 1481(3266) 2963(65 | 32) | | 5x Weekly | Grab | | Ammonia (as N) | | 3 mg/1 | 5 mg/l | 3x Weekly | 24 Hr. Comp. | | Total Copper | | | 1.0 mg/l | Twice Monthly | 24 Hr. Comp. | | Total Lead | 0.45(1.0) 0.9(2.0) | | | Twice Monthly | 24 Hr. Comp. | | Total Residual Ch | nlorine | 1.0 mg/1 | 1.5 mg/l | Daily | Grab | The term noncontact cooling water means water used for cooling which does not come into direct contact with any raw material, intermediate product, by-product, waste product, or finished product. - a. The pH shall be within the range of 6.0 to 9.5, 90% of the time; within the range of 6.0 to 11.0, 99% of the time; and within the range of 2.0 to 11.0, 100% of the time during a 24 hour period beginning on or about 7:00 a.m. of each day. The pH shall be monitored as follows: continuous; report the maximum and minimum and percent of time within each range during the above 24 hour period. - b. The discharge shall not cause excessive foam in the receiving waters. The discharge shall be essentially free of floating and settleable solids. - c. The discharge shall not contain oil or other substances in amounts sufficient to create a visible film or sheen on the receiving waters. - d. Samples taken in compliance with the monitoring requirements above shall be taken at Outfall 003 prior to discharge to the Detroit River. - e. In the event the permittee shall require the use of Water Treatment additives, the permittee shall notify the Michigan Water Resources Commission in accordance with the requirements of Part II, Section A-1 of NPDES Permit No. MI 0002381. ## 4. Final Effluent Limitations During the period beginning on the effective date of this Final Order and lasting until the expiration of authorization under this Final Order, the permittee is authorized to discharge up to a maximum of two million three hundred thousand (2,300,000) gallons per day** of process water, including ferric chloride process water from Outfall 005. Such discharge shall be limited and monitored by the permittee as specified below: | | kg/day () | Discharge
lbs/day)** | Limitation | | Monitoring Re | quirements | |-------------------------------|-----------|-------------------------|------------|-----------|---------------|-----------------------| | Effluent
Characteristics | Monthly | Daily | Monthly | Daily | | Sample
Type | | Flow, M ³ /Day (MO | (D) | | | | Continuous | | | Total Suspended
Solids* | 212(467) | 425(934) | 35 mg/l | 70 mg/1 | 5x Weekly | Grab | | COD | | 821(1801) | | | 3x Weekly | 24 Hr. Comp. | | Ammonia (as N) | | | 1.0 mg/1 | 1.5 π/g/1 | 3x Weekly | 24 Hr. Comp. | | Total Residual
Chlorine | | | 1.0 mg/l | 1.5 mg/l | Daily | Crab | | Chlorides | | | | | 3x Weekly | 24 Hr. Comp. | | Total Lead | 0.6(1.4) | 1.2(2.7) | 0.1 mg/l | 0.2 mg/1 | Twice Monthly | 24 Hr. Comp. | | Oil & Grease | | | No Visibl | e Film | Daily | Visual
Observation | | Temperature | | | | | Daily | Reading | ^{*} The above limitations for Total Suspended Solids may be modified to net value upon demonstration to the Chief of the Water Quality Division of the Michigan Department of Natural Resources that gross values are unattainable due to technical or economic
considerations. Such modification shall be made in accordance with Part II, Section B-4 of NPDES Permit No. MI 0002381. # ** kg/day (lbs/day) values are not related to flow volume. - e. The pH shall be within the range of 6.0 to 9.5, 90% of the time; within the range of 5.0 to 10.0, 95% of the time; within the range of 3.0 to 11.0, 100% of the time during a 24 hour period beginning on or about 7:00 a.m. of each day. The pH shall be monitored as follows: continuous report the maximum and minimum and percent of time within each range during the above 24 hour period. - b. The discharge shall not cause excessive foam in the receiving waters. The discharge shall be essentially free of floating and settleable solids. - c. The discharge shall not contain oil or other substances in amounts sufficient to create a visible film or sheen on the receiving waters. - d. Samples taken in compliance with the monitoring requirements above shall be taken at Outfall 005 prior to mixing with effluent from the Wyandotte-Wayne waste water treatment plant. ## 5. Final Effluent Limitations - Total Chloride Loading During the period beginning on the effective date of this Final Order and lasting until the expiration of authorization under this Final Order, the permittee is authorized to discharge contact cooling water, barometric condenser water, noncontact cooling water and process water from Outfalls 001, 002, 003, and 005. Such discharges shall be limited and monitored by the permittee as specified below: | | Discharge Limitations | Monitoring Requirements | |----------------|-----------------------|-------------------------| | Effluent | kg/day (lbs/day) | Measurement Sample | | Characteristic | Daily Maximum | Frequency Type | Total Combined Outfalls 001, 002, 003 and 005: Chlorides* 227,000(500,000) 3x Weekly Calculati * The above limitations for chlorides may be modified to a net value upon demonstration to the Chief of the Water Quality Division that gross values are unattainable due to technical or economic considerations. Such modification shall be made in accordance with Part II, Section B-4 of NPDES Permit No. MI 0002381. ### 6. Final Effluent Limitations During the period beginning on the effective date of this Final Order and lasting until the expiration of authorization under this Final Order, the permittee is authorized to discharge up to a maximum of ten million (10,000,000) gallons per day* of noncontact cooling water, barometric condenser water and process water from Outfall 006. Such discharge shall be limited and monitored by the permittee as specified below: | | | s/day)* | Limitatio | itations | Monitoring Re | | |-------------------------------|-------------------|---------------------|------------|----------|---------------|-----------------------| | Effluent | Monthly | Daily | - | Daily | Measurement | Sample | | Characteristic | Average | Maximum | Average | Maximum | Frequency | <u>Type</u> | | Flow, M ³ /Day (MG | D) | | | | 3x Weekly | | | BOD ₅ | 661(1457) | 967(2133) | | | 3x Weekly | 24 Hr. Comp. | | COD | | | | | 3x Weekly | 24 Hr. Comp. | | Total Suspended
Solids | 173(380)
(net) | 259(570)
(net) | | | 3x Weekly | 24 Nr. Comp. | | Chlorides | | 4000(8800)
(net) |) | | 3x Weekly | 24 Hr. Comp. | | Armonia (unioniza | ed) | | | 0.2 mg/1 | 3x Weekly | Grab | | Total Residual C | nlorine | | | 0.5 mg/1 | 3x Weekly | Grab | | Phenol | | 4.5(10) | | 9.2 mg/1 | 3x Weekly | 24 Hr. Comp. | | Sulfide | | | | | Weekly | 24 Hr. Comp. | | Temperature | | | | | 3x Weekly | Reading | | Oil & Grease | | | No Visible | e Film | Daily | Visual
Observation | ^{*} kg/day (1bs/day) values are not related to the flow volume. Total Zinc 1.0 mg/1 Twice Monthly 24 Hr. Comp. - a. The pll shall be within the range of 6.0 to 9.5, 90% of the time; within the range of 6.0 to 10.0, 100% of the time during a 24 hour period beginning on or about 7:00 a.m. of each day. The pll shall be monitored as follows: continuous report the maximum and minimum and percent of time within each range during the above 24 hour period. - b. The discharge shall not cause excessive foam in the receiving waters. The discharge shall be essentially free of floating and settleable solids. - c. The discharge shall not contain oil or other substances in amounts sufficient to create a visible film or sheen on the receiving waters. - d. Samples taken in compliance with the monitoring requirements above shall be taken at Outfall 006 prior to discharge to Monguagon Creek. # 7. Intake Monitoring Requirements During the period beginning on the effective date of this Final Order and lasting until the expiration of authorization under this Final Order, the permittee shall monitor the intake as specified below: | | Monitoring Paquiraments | | | | | | |------------------------|--------------------------|----------------|--|--|--|--| | Characteristic | Neasurement
Frequency | Sample
Type | | | | | | BOD ₅ | Weekly | 24 Hr. Comp. | | | | | | Total Suspended Solids | 5x Weekly | 24 Hr. Comp. | | | | | | Chlorides | 3x Weekly | 24 Hr. Comp. | | | | | | COD | 3x Weekly | 24 Hr. Comp. | | | | | - a. Samples taken in compliance with the monitoring requirements above shall be taken of the intake after initial screening. - 8. Limitations, Monitoring and Reporting Requirements for Deep Disposal Beginning upon the issuance of this Final Order and lasting until the expiration of authorization of this Final Order the permittee shall dispose of previously authorized wastewaters into an approved strata by means of disposal wells which shall be equipped, tested, and operated in conformance with the requirements of the Mineral Wells Act, Act 315, Public Acts of 1929 and Act 245, Public Acts of 1929, as amended, and the rules promulgated thereunder. The company shall submit to the Chief of the Water Quality Division and obtain his approval of its contingency plan for periods of outage of the deep well disposal system. Any outage of the deep well disposal system shall be immediately reported to the Chief of the Water Quality Division and the Geological Survey Division Supervisor of Waste Disposal Wells. # Monitoring Requirements for Deep Well Disposal | PARAMETER Wellhead Pressure | LIMITS (None set) | FREQUENCY
Weekly | TYPE
Psig | |-----------------------------|-------------------|---------------------|-------------------| | Flow Rate | | Weekly | GPM (Pump Rate) | | Flow Total | | Monthly | MG/MON (Last day) | | Total Suspended Solids | | Weekly | #/1000 gal/(Grab) | The disposal to the deep well is limited to currently authorized discharges. Any new discharges to the deep well shall be done in accordance with Part II-A-1 of NPDES Permit No. NI 0002381. The above authorization pertains to the deep well disposal units as permitted by the Geological Survey Division of the Michigan Department of Natural Resources. | Mineral Well Permit No. | Well No. | |-------------------------|----------| | 049-736-882 | 4-049 | | 048-736-882 | 8-048 | | 047-736-882 | 15-047 | # Reporting Requirements for Deep Well Disposal The permittee shall comply with the following reporting in accordance with the schedule under C of NPDES Permit No. MI 0002381, Schedule of Compliance - Deep Well Disposal. - a. Submit contingency plans for periods of outage. - b. Submit a completed Nichigan Discharge Permit Application and a "Well and Reservoir Data on Underground Industrial Waste Disposal Systems" form (as approved by the Geological Survey Division of the Department of Natural Resources) for each disposal well to the Chief of the Water Quality Division Department of Natural Resources on or before N/A. Review of the discharge(s) to the deep disposal well(s) will be made upon receipt of the application. Any modification in the disposal well requirements of the permit will be made in accordance with Part II-B-4 of NPDES Permit No. MI 0002381. # SECTION B POLLUTION INCIDENT PREVENTION PLAN IT IS FURTHER ORDERED that Pennwalt Corporation implement the approved Pollution Incident Prevention Plan in accordance with the following schedule: # l. West Plant - a. Secondary Containment (Diked Tanks) - 1.) The Company has submitted and received approval of a final design, typical of the facilities to be constructed. - 2.) Complete construction by Movember 1, 1981. - Spillage Containment (Tenk Car and Tank Trailer Building No. 49 Unloading/Loading) - 1.) The Company has submitted and received approval of a final design, typical of the facilities to be constructed. - 2.) Complete construction by August 1, 1981. - c. Spillage Drainage Prevention (Tank Car and Tank Trailer Loading/Unloading) 1.) The Company has submitted and received approval of a final design, typical of the facilities to be constructed. - 2.) Complete construction by October 1, 1981. - d. In-Process Containment Facilities (Sump and Valves) 1.) Submittal and approval of a final design, typical of the facilities to be constructed, by March 1, 1931. - 2.) Complete construction by June 1, 1982. - e. Vacuum Trailer - 1.) A vacuum trailer is on site and operational. ### 2. East Plant - a. Secondary Containment (Diked Tanks) 1.) The Company has submitted and received approval of a final design, typical of the facilities to be constructed. - 2.) Complete construction by August 1, 1981. - b. Secondary Spill Prevention (Dry Moats) 1.) The Company has submitted and received approval of a final design, typical of the facilities to be constructed. - 2.) Complete construction by November 1, 1981. - Alternate Containment Program (Undiked Tanks-Plugs) 1.) The Company has submitted and received approval of a final design, typical of the facilities to be constructed. - 2.) Complete construction by October 1, 1981. - d. Spillage Containment (Tank Trailer Unloading) 1.) The Company has submitted and received approval of final design, typical of the facilities to be constructed. 2.) Complete construction by September 1, 1981. - e. Spillage Drainage
Prevention (Tank Car and Tank Trailer) 1.) The Company has submitted and received approval of a final design, typical of the facilities to be constructed. - 2.) Complete construction by August 1, 1981. - f. Alternate Containment Program (In-Process) l.) Submittal and approval of a final design, typical of the facilities to be constructed, by June 1, 1981. - 2.) Complete construction by September 1, 1932. - g. Liquid Ferric Sludge (Defluidizing Pad) 1.) Submittal and approval of a final design, typical of the facilities to be constructed, by April 1, 1981. - 2.) Complete construction by September 1, 1981. No later t 14 calendar days following any of t. dates for completion of construction identified in the above schedule of compliance, the Company shall submit a written notice of compliance or noncompliance. In the latter case, the notice shall include the cause of noncompliance, any remedial actions taken and the projected date for completion of construction. IT IS FURTHER ORDERED that Pennwalt Corporation submit progress reports on or before July 1, 1981, January 1, 1982, July 1, 1982, and January 1, 1983 regarding the status of implementation of the Pollution Incident Prevention Plan. ## SECTION C PROCESS WASTEWATER CHARACTERIZATION STUDY Pennwalt Corporation shall conduct a Process Wastewater Characterization Study in accordance with Attachment "A" hereto in accordance with the following: - 1. Submit an approvable schedule to implement the Wastewater Characterization Study, Attachment "A" to the Chief of the Water Quality Division on or before July 31, 1980. The Company has submitted a schedule which is under review. - 2. Submit a listing of parameters by process, for which analytical procedures are currently not available, to the Chief of the Water Quality Division on or before July 31, 1980. The Company has submitted this listing. - 3. Submit an approvable detailed analytical procedure for each parameter identified in 2. above to the Chief of the Water Quality Division by date of entry of this Final Order, except as provided in 4. below. The analytical procedures approved by the Chief of the Water Quality Division shall be utilized in the process wastewater characterization study. The Company has submitted a proposed analytical procedure for the lower alkylamines through di-n-butylamine which is under review. - 4. Where analytica' procedures cannot be developed for any parameter(s) the Company shall submit detailed documentation of attempts to develop such procedure(s) and a proposal for additional research to accomplish same, including an implementation schedule, to the Chief of the Water Quality Division on or before February 28, 1981. Any additional research to develop analytical procedures must receive the approval of the Chief of the Water Quality Division. Termination of attempts to develop analytical procedures must receive the approval of the Chief of the Water Quality Division. - 5. Submit a progress report to the Chief of the Water Quality Division detailing the actions the Company has taken to comply with this section. Said report shall be submitted by no later than February 28, 1981. - Submit the results of the Process Wastewater Characterization Study to the Chief of the Water Quality Division on or before April 30, 1981. ## SECTION D CONCLUSION IT IS AGREED that the entry of this Final Order is in settlement for violations of NPDES Permit No. MI 0002381 and Final Order of Abatement F.O. 1931. The entry of this Final Order completes the Company's obligations under the Final Order No. 1931 and supercedes and rescinds Final Order No. 1931. The Pennwalt Corporation agrees that but for this Final Order, the Company might be subject to the civil penalty provisions provided by law for failure of the Company to be in full compliance with the terms and conditions of NPDES Permit No. MI 0002381 and Final Order of Abatement No. 1931. The Pennwalt Corporation and the Department hereby agree that the \$150,000 liquidated damages paid on October 10, 1977, and the liquidated damages payments paid pursuant to Final Order No. 1931 totaling \$180,000 and including the \$30,000 accompanying this settlement, the total of the above representing a payment of \$360,000, constitute fair settlement for the above alleged violations and completely satisfy the Company's obligations under Final Order of Abatement No. 1931. This settlement is not a release or waiver of liability for environmental damage or resource impairment that has or may result from past, current or future Company operation. The Company agrees, however, to pay the following liquidated damages for failure to comply with the conditions of this Final Order: - 1. For those days beyond the date of entry of this Order, until May 31, 1981, any discharges from Outfalls 002, 003, 005, or 006 that are in violation of the final effluent limitations for the respective outfalls specified herein, \$2,000 per day. Any pll excursions of 15 minutes or less duration shall not be subject to this \$2,000 per day payment provision. All excursions, however, are subject to appropriate enforcement action. - 2. On June 30, 1981 the Company shall notify the Department of Natural Resources in writing for each day since the date of entry of this Order for which the \$2,000 is payable under this subsection of this Order, and the Company shall contemporaneously pay such amounts (if any) then accrued to the State. - 3. A violation of the final effluent limitations for Cutfalls 002, 003, 005, or 006 after the date of entry of this Order is a violation of this Final Order. The State may seek other and further relief for noncompliance conducted after any final compliance date specified in this Order. Pennualt Corporation is hereby put on Notice by this Commission that any material failure to comply with this Final Order may result in prompt enforcement action. A violation of any date in any of the schedules of compliance specified herein is a violation of the Total Order. Nothing in this Order is intended to or shall deprive Pennwalt Corporation of its right or privilege to petition the Water Resources Commission or such other authority as may be appropriate for review of any matters relating to this Final Order. This Final order is entered on direction of the Michigan Water Resources Commission and the Director of the Department of Natural Resources and shall expire July 1, 1983. The authorizations to discharge pursuant to Section A of this Final Order shall expire upon final action by the Water Resources Commission on Pennwalt Corporation's application dated November 30, 1979 for reissuance of NPDES Permit No. MI 0002381. The Commission and the Department retain jurisdiction to modify this Order or enter such further Orders as the fact and circumstances may warrant. PENNWALT CORPORATION WATER RESOURCES COMMISSION BY: Robert J. Courchaine Executive Secretary Dated: Dated: Approved as to Substance: MICHIGAN DEPARTMENT OF NATURAL MICHIGAN DEPARTMENT OF NATURAL RESOURCES RESOURCES Howard A. Tanner, Director Environmental Enforcement Division Office of the Director Jack D. Bails, Chief Dated: Approved as to Form: Frank J. Kelley Attorney General BY; Assistant Attorney General Dated: ATTACHMENT A Pennwalt Corp. Wyandotte Plant Monitoring Format for Characterization of Waste Water From Operating Processes Discharging to 006 Outfall | Process | Variable | Sample Type | Monitoring Frequency | Duration | Sampling
Location | Flow Est.
Location | Methods | |-------------------|--|-------------|----------------------|--------------------------|------------------------------|----------------------------------|--| | 12 (Amyl Phenols) | рH | grab | 3 grabs/batch | 2 events/pheno1
batch | Phenol Sewer
Glat Manhole | 11,000 g.Sump
Vol measurement | Std. Methods | | | pH
phenol
substituted
phenols | composite | continuous batch | 2 events/phenol batch | Phenol Sewer
Clsc Manhole | 11,000 g.Sump
Vol measurement | Std. Methods Std. Methods G.C./p.d.(c) | - a) Several phenol compounds are generated in this process. The specific substituted phenol to be analyzed will be determined by the phenol distillation batch being run. The following batch still charges will be monitored: regular crude batch; orthogonal phenol batch; diamy1 phenol batch. - 20 (Ditertiary Nonyl Polysulfides) No process wastestream discharges: refer to washout schedule Table II. | 21 (Alkylamines) | PН | grab | 3 grabs/24-hour | 3 days/amine
campaign | Stripper
(21281) | Stripper (21281) | |------------------|-----------------------------------|-----------|--------------------|--------------------------|---------------------|--------------------------------| | | pH
ammonia
alkylamine
b) | composite | continuous 24-hour | 3 days/amine
campaign | Stripper
(21281) | Stripper
(21281)
measure | b) Various alkylamines are produced in this process: ethyl, butyl, amyl, isopropyl, n-butyl, and sec-butyl. The specific alkyl amine to be analyzed for will be determined by the specific amine type being run. Std. Methods (Nessler) ASTM (sec and tert. amines) G.C./p.d. (individual) amines Std. Methods Std. Methods c) G.C./p.d. Gas chromatography with photoionization detector | | | | | | | | • | |-------------------------------|--|--------------------|---|--|----------------------|-------------------------------|---| | rocess | Variable | Sample Type | Monitoring Frequency | Duration | Sampling
Location | Flow Est.
Location | Methods | | 2 (Vultacs) | pF.
substituted
phenols | grab | 1 grab/batch charge
1 grab/batch aeration | 5
days (Day Shift)
5 days (Day Shift) | Reactor vac
jet | Reactor vac
jet
measure | Std. Methods
G.C./p.d. | | | рН | grab | 1 grab/batch | 5 days (Day Shift) | S-Scrubber | S-Scrubber
measure | Std. Methods | | | ьн | grab | 3 grabs/shift | 5 days (Day Shift) | Acid Scrubber | Acid Scrubber
measure | Std. Methods | | 26 (Diethyl
Thioureas) | рĦ | grab | 3 grabs/batch | 3 days (Day Shift) | Reactor yac | Reactor vac
jet
measure | Std. Methods | | | pH
ethylamine
diethyl thiourea
carbon disulfide
hydrogen sulfide | composite | 3 grabs/batch
composited | 3 days (Day Shift) | Reactor vac
jet | Reactor vac
jet
measure | Std. Methods
G.C./p.d.
G.C./p.d.
G.C./p.d.
Std. Methods | | | diethyl
thiourea | composite | continuous 24-hr. | 3 days | Vent Scrubber | Vent Scrubber
measure | G.C./ṕ.d. | | | diethyl
thiourea | Measure lbs. floor | dry product lost to | 3 days | Packaging (flaker) | - | Weigh | | 26 (Ethyl Butyl
Thioureas) | pli | grab | 3 grabs/batch | 3 days (Day Shift)
(if possible) | Reactor vac
jet | Reactor vac
jet
measure | Std. Methods | | | pil cthylamine butylamine diethyl thiourea dibutyl thiourea ethyl butyl thio carbon disulfide hydrogen sulfide | urea | 3 grabs/batch
equally spaced
composited | 3 days (Day Shift) | Renctor vac
jet | Reactor vac
jet
measure | Std. Methods G.C./p.d. G.C./p.d. G.C./p.d. G.C./p.d. G.C./p.d. Std.Methods (Sulfides) | · | Process | Variable | Sample Type | Monitoring Frequency | Duration . | Sampling
Location | Flow Est.
Location | Methods | |------------------------|--|--------------------------------------|--|-----------------------|---------------------------------------|--------------------------------------|---| | 28 (H ₂ S R | ecovery) carbon dis cthylamine butylamine diethyl th dibutyl th ethylbutyl hydrogen s | iourea
iourea
thiou rea | Collect and weigh filter cake from process filter for 3 separate reaction batches Determine amount generated per day | | | Measure filter
cake wash
water | Std. Methods G.C./p.d. G.C./p.d. G.C./p.d. G.C./p.d. G.C./p.d. G.C./p.d. G.C./p.d. Std.Methods (Sulfides) | | 31 (Amine) | рН | grab | 1 grab every 8hr/batch | 5 days* | Stripper ^{d)}
(3146) | Stripper ^{d)}
(3146) | Std. Mcthods | | | pH
ammonia
alkylamine
alkanolami | | continuous 24-hr. | 5 days* | Stripper ^{d)} (3145) | Stipper d)
(3146)
measure | Std. Methods
Std. Methods
ASTM (Amine | | • | arkatiorani | / | | | · · · · · · · · · · · · · · · · · · · | | group) G.C./p.d. (Individual amine | | | monitori | ng will be condu | ending on production schedule. Fo
cted in accordance with the above
or alkanolamines to be analyzed f | during each day of pr | roduction. | • | (1101711101 011111 | | 35 (Alky1 | lamines) | | | | | | | | | рН | grab | 3 grabs/24-hr. | 5 days* | Stripper
(3546) | Stripper
(3546) measure | Std. Methods | | | ph | composite | continuous 24-hr | 5 days* | Stripper
(3546) | Stripper
(3546) measure | Std. Methods | | | ammonia | g*** | | | | | Std. Methods ASTM (Amine group) | d) Wastestream from stripper 3146 discharged only during vacuum distillation ***The specific alkylamines to be analyzed for will be determined by the product being run. conducted in accordance with the above during each day of production. | rocess | Variable | Sample Type | Monitoring Frequency | Duration | Sampling
Location | Flow Est.
Location | Methods | |---------------------|---|--------------------|------------------------------------|-------------------|----------------------|--|---| | 88 (Endoth
Acid) | nall pH | grab | 3 grabs/8 hr. (equally spaced) | 3 events | #28 Manhole* | #28 Manhole* | Std. Methods | | , | pH
furan
endothall
BOD ₅ | composite
acid | continuous 24-hr. | 3 days | #28 Matthole* | #28 Manhole* | Std. Methods
G.C./p.d.
G.C./p.d.
Std. Methods | | 38 (Dibuty
thiou | | grab | 3 grabs/12 hr. (equally spaced) | 3 events | #28 Manhole* | #28 Manhole* | Std. Methods | | | pli
dibutylthi
carbon dis
butylamine
hydrogen s | sulfide | continuous 24-hr. | 3 days | #28 Manhole* | #28 Manhole* | Std. Methods
G.C./p.d.
G.C./p.d.
G.C./p.d.
Std. Methods
(sulfides) | | | *Pilot pla | ant to be shutdown | n during this test and block off u | pstream flow into | Manhole #28. | • | | | 4 (Alkan | olamines) | | | | | | | | | pН | grab | 1 grab every 8 hr/24-hr* | 3 days | 44146 Stripper | 44146 Stripper measure | Std. Methods | | | pН | grab | 1 grab every 8 hr/24-hr* | 3 days | Vac jet | Vac jet
Est. calculation
(design data) | Std. Methods | | | pH
alklamines
alkanolami
ethyiene o
propylene | ines**
oxide*** | continuous 24-hr* | 3 days | 44146 Stripper | 44146 Stripper
measure | Std. Methods G.C./p.d. G.C./p.d. G.C./p.d. G.C./p.d. | | | pH
alkylemind
alkanolam
ethylene d
propylene | ines**
oxide*** | continuous 24-hr* | 3 days | Vac jet | Vac jet
Est. calculation
(design data) | Std.Methods G.C./p.d. G.C./p.d. G.C./p.d. G.C./p.d. | For each product group campaign The specific alkylamines and alkanolamines to be analyzed for will be determined by the product being run Either ethylene oxide or propylene oxide will be analyzed depending on product being run | rocess | Variable | Sample Type | Monitoring Frequency | Duration | Sampling | Flow Est. | Methods | |--|---|-------------|--|----------|-------------------------------|--|---| | | | | | | Location | Location | | | 15 (Diethylhydroxyl-
amine) | pH
triethylamine
triethylamine ox
phosphorus - tot | | l grab/55g wash water
(3 grabs per wash
cycle*)
*if more than 165g.
total wash water
more grabs will be col | | 4526 Filter
washings | 4526 Filter
washings
measure | Std.Methods
G.C./p.d.
G.C./p.d.
Std.Methods | | | Нq | grab | 1 grab every 8 hr/day | 3 days | 4531 Vac jet | 4531 Vac jet
measure | Std.Methods | | | p4
triethylamine
triethylamine ox
diethylhydroxyla | | continuous 24-hr. | 3 days | 4531 Vac jet | 4531 Vac jet
measure | Std.Methods
G.C./p.d.
G.C./p.d.
G.C./p.d. | | ÷ | pH
triethylamine
triethylamine ox
diethylhydroxyla
phosphorous - to | mine | l grab/wash cycle | 3 days | 4522 & 4553
Wash receivers | 4522 & 4533
Wash receivers
meter | Std.Methods
G.C./p.d.
G.C./p.d.
G.C./p.d.
Std.Methods | | 46 (Methane Sulfonyl
Chloride and,
Methane Sulfonic
Acid) | pH
hCl | grab | l grab during
trailer loading | 3 events | 4659 HCl
Scrubber | 4659 HCl
Scrubber
measure | Std.Methods
Std.Methods
(titration) | | | рН
НС1 | grab | <pre>1 grab during norma! venting w/o trailer loading</pre> | 3 events | 4659 HC1
Scrubber | 4659 HCl
Scrubber
measure | Std.Methods
Std.Methods
(titration) | | | pH
HC1 | composite | continuous 24-hr | l day | 4659 HCl
Scrubber | 4659 HCl
Scrubber
measure | Std.Methods
Std.Methods
(titration) | | | þ! ! | grab | 1 grab every 8 hr. | 1 day | 4632 Vac jet | 4632 Vac jet
measure | Std.Methods | | | pH
methylmercaptan
chlorine
methane sulfonyl
chloride | composite | continuous 24-hr | 3 days | 4632 Vac jet | 4632 Vac jet
measure | Std.Methods
G.C./p.d.
Std.Methods
G.C./p.d. | | Process | Variable | Sample Type | Monitoring Frequency | Duration | Sampling
Location | Flow Est.
Location | Methods | |--------------------|--|-------------|--|---|-----------------------------------|--|--| | 46 Cont'd. | Hq | grab | 1 grab every 8 hr | 1 day | 4628 Condenser
(chlorine recyc | 4628 Condenser
le) measure | Std.Methods | | | pR
chlorine
methyl mercaptan
methane sulfonyl
methane sulfonic | | continuous 24-hr | 3 days | 4628 Condenser | 4628 Condenser
measure | Std. Methods
Std.Methods
G.C./p.d.
G.C./p.d.
G.C./p.d. | | 47 (Alkanolamines) | цц | grab | 1 grab every 8 hr | 3 days | 4765 Stripper | 4765 Stripper
measure | Std.Methods | | | rH
alkylamines*
alkanolamines*
ethylene oxide** | composite | continuous 24-hr | 3 days | 4765 Stripper | 4765 Stripper
measure | Std.Methods
G.C./p.d.
G.C./p.d.
G.C./p.d. | | | or
propylene oxide* | * | *specific alkyl and a determined by amine ** either ethylene ox will be analyzed d | campaign being
ide or propyle | run | | G.C./p.d. | | · | рН | grab . | 1 grab every 8 hr | 3 days | Vac jet | Vac jet
Est. calculation
(design data) | Std.Methds | | | pk alkylamines* alkanolamines* ethylene oxide** or propylene oxide* | | <pre>* specific alkyl and determined by amin **either cthylene oxi will be cenalyzed d campaign being run.</pre> | e campaign
beinde or propyled lepending on an | ng run
Le oxide | Vac jet
Est.calculation
(design data) | Std. Methods G.C./p.d. G.C./p.d. G.C./p.d. G.C./p.d. | | Pilot Plant | рН | grab | 1 grab every 8 hours | 3 days | 4282 Vac 1et | 4282 Vac jet | Std. Methods | | Distillation | рИ | composite | continuous 24 hr. | 3 days | 4282 Vac jet | 4282 Vac jet | Std.Methods | | | alkylamines*
alkanolamines*
ammonia | | *Specific alkyl and a | alkanolaminės t | o be analyzed will be d | meter letermined by | G.C./p.d.
G.C./p.d.
Std. Methods | . | Process | Variable | Sample Type | Monitoring Frequency | Duration | Sampling
Location | Flow Est.
Location | Methods | |------------------------|---|---------------------------|-------------------------------------|-----------|--------------------------------|--|---| | Pennac NB | Иq | composite | continuous, 1 per batch | 3 batches | 4282 Vac Jet | 4282 Vac Jet
meter | Std.Methods | | Ultra
(Pilot Plant) | pid
menoethanolamine
zinc
N formulated 4870
4870
triethylamine
carbon disulfide
teluene
Fennac NB ultra | composite | continuous, 1 per batch | 3 batches | 4282 Vac Jet | 4282 Vac Jet
meter | Std.Methods G.C./p.d. A.A. Spectra. Unknown Unknown G.C./p.d. G.C./p.d. G.C./p.d. Unknown | | | Пq | grab | 1 per filter cycle
(3 per batch) | 3 events | Filter
(washwater) | Measure wash-
water volume | Std.Methods | | · | pli
monoethanolamine
zinc
N formylated 487
4870
triethylamine
carbon disulfide
toluene
Pennac NB Ultra | 0 | continuous, l per
reaction batch | 3 events | Filter
(wastewater) | Measure wash-
water volume | Std.Methods G.C./p.d. A.A. Spectro. Unknown Unknown G.C./p.d. G.C./p.d. G.C./p.d. Unknown | | Hexadecyl
Disulfide | pii
bromine
hexadecyl-
mercaptan | composite
during charg | cotinuous, 1 per
ging batch | 3 events | 4828 Vac Jet | 4282 Vac jet
meter | Std.Methods
Std.Methods
G.C./p.d. | | | pH
HBr
hexadecyl mercap
hexadecyl disulf
bromine | | continuous, 1 per batch | 3 events | 4280 Vac jet | 4280 Vac jet
meter | Std.Methods Std.Methods G.C./p.d. Unknown Std.Methods | | | pH
hexadecyl disulf
hexadecyl mercap
HBr | | continuous, 1 per
batch | 3 events | 42100 Reactor
(Water layer) | 42100 Reactor
(Water layer)
measure volume | Std.Methods Unknown G.C./p.d. Std.Methods | | | bromine | | : | | | | Std.Methods | . | Process | Variable | Sample Type | Monitoring Frequency | Duration | Sampling
Location | Flow Est.
Location | Methods | |---|--|---------------------|---|-----------|----------------------|---------------------------------------|---| | Pennac NB (Pilot Plant) | рН | grab | every 3 hrs. during stripping operation | 3 events | 4282 Van jet | 4282 Vac jet
meter | Std. Methods | | Part A | pH
dimethylamine
diethylamine
dibutylamine
carbon disulfide
formaldehyde
Pennac Part A
hydrogen disulfi | | continuous, l per
batch | 3 events | 4282 Vac jet | 4282 Vac jet
meter | Std.Methods G.C./p.d. G.C./p.d. G.C./p.d. G.C./p.d. G.C./p.d. Std.Methods | | Pennac NB | pli . | grab | every 3 hrs. during stripping operation | 3 events | 4282 Vac jet | 4282 Vac jet
meter | Std. Methods | | Part B (Pilot Plant) | pli dimethylamine dibutylamine carbon disulfide formalehyde thiourea hydrogen disulfi Pennac Part B | | continuous, 1 per
batch | 3 events | 4282 Vac jet | 4282 Vac jet
meter | Std.Methods G.C./p.d. G.C./p.d. G.C./p.d. G.C./p.d. G.C./p.d. Std.Methods Unknown | | Anhydrous Diethylhydroxylamine Distillation | pll . | grab | 1 every 8 hrs/24hrs | 3 days | 4282 yac jet | 4282 Vac jet | Std.Methods | | (Pilot Plant) | рК | composite | continuous 24 hour | 3 days | 4282 Vac jet | meter
4282 Vac jet
meter | Std.Methods | | | diethylhydroxyl
amine
diethylamine | | | | | | G.C./p.d.
G.C./p.d. | | Bdlg. 26-Drumming
Vent Scrubber-
124.14.2 | pH
sodium methane - | grab of spent batch | 1 per batch | 3 batches | Scrubber 124.14.2 | Scrubber 124.14.2
measure volume | Std. Methods | | | sulfonate
alkalinity | | | | | | Unknown
Std. Methods | , | Process | Variable | Sample Type | Monitoring Frequency | Duration | Sampling
Location | Flow Est.
Location | Methods | |--------------------------------------|---------------------------------|-------------|-----------------------------------|----------|----------------------|------------------------------|---------------------------| | Bldg. 26 Drumming
Vent Scrubber - | рĦ | composite | continuous,
1 per drumming day | 3 days | Scrubber 124.14. | Scrubber 124.14.1 | Std. Methods | | 124.14.1 | alkylamines
orthoamyl phenol | | . per diamining day | | | meter flow | G.C./p.d.
G.C./p.d. | | | рН | composite | continuous,
1 per drumming day | 3 days | Scrubber 124.14. | Scrubber 124.14.1 meter flow | Std.Methods
"G.C./p.d. | · ·. # ATTACHMENT A Continued Pennwalt Corp. - Wyandotte Plant - Monitoring Format for Characterization of Waste water from Washouts of Processes Discharging to 006 Outfall | Process | Variable | Sample Type | Monitoring
Frequency | Washout
Frequency | Duration | Sampling
Location | Flow Est.
Location | Methods | |----------------------------------|--|---------------|--|----------------------|----------------------|----------------------|---------------------------|---| | 12 (Amy Phenol) | Ro discharge di | uring washout | | | | | | | | 20 (Di t-Nonyl Poly-
sulfide) | pH
t-nonyl mercap
t-nonyl polysu | | l per washout | 1 per year | 1 event | 2030 Reactor | Measure
volume | Std.Methods
G.C./p.d.
Unknown | | 21 (Alkylamines) | ,
, | grab | 1 each 8 hrs.
during washout | 12-15 per yr. | 1 event/ | 21101 Stripper | 21101 Stripper
measure | - Std. Methods | | | pЧ
Ammonia
·Alkylamines* | composite | continuous during
washout | 12-15 per yr. | 1 event/
campaign | 21101 Stripper | 21101 Stripper
measure | Std. Method:
Std. Method:
G.C./p.d. | | | рН | grab | l each 8 hrs.
during washout | 12-15 per yr. | l event/
campaion | 21281 Stripper | 21281 Stripper
measure | r Std.Methods | | + 1+ | pH
Ammonia
Alkylamines* | composite | continuous during
washout | 12-15 per yr. | 1 event/
campaign | 21281 Stripper | 21281 Stripper
measure | Std.Methods
Std.Meth
G.C./p.d. | | | | | *The specific alkyla
by the specific am | | zed for will be | determined | | | | 22 (Vullacs) | No discharge d | uring washout | | | | | | | | 26 (Diethyl
Thiourea) | pH
Ethylamine
Diethyl Thiour
Carbon Disulfi
Hydrogen Sulfi | de | l per washout | l per 2 yrs. | l event | 2603 Reactor | 2603 Reactor
measure | Std.Methods
G.C./p.d.
G.C./p.d.
G.C./p.d.
Std.Methods | | Process | Variable | Sample Type | Monitoring
Frequency | Washout
Frequency | Duration | Sampling
Location | Flow Est.
Location | Methods | |---------------------------------|---|-------------|---|----------------------|----------------------|--|--------------------------------|---| | 28 (H ₂ S Recovery) | r:ii | grab | 5 per washout | 12 per year | 1 event | 2812, 2813
Reactors | 2812, 2813
Reactors | Std.Methods | | | Carbon Disulfide Ethylamine Butylamine Diethyl Thiourea Dibutyl Thiourea Ethyl-Butyl Thiou Hydrogen Sulfide | | 2 from 2812
2 from 2813
1 from 2802 | 12 per year | 1 event | 2802 Day Tank
sampled separ-
ately | 2802 Day Tank metered | G.C./p.d. G.C./p.d. G.C./p.d. G.C./p.d. G.C./p.d. G.C./p.d. Std.Methods | | 31 (Amine Batch) (Distillation) | pī! | grab | every 8 hrs.
during cleanout | 12 per year | 1 event/
campaign | 3146 Stripper | 3146 Stripper
measure | Std.Methods | | | pil
Armonia
Alkylamines*
Alkanolamines* | composite | continuous during
cleanout | 12 per year | 1 event/camp.ign | 3146 Stripper | 3146 Stripper
measure | Std.Methods
Std.Methods
G.C./p.d.
G.C./p.d. | | | | | *The specific alkylan | | | alyzed | | • | | 35 (Alkylamines) | pH
Ammonia
Alkylamines* | composite | continuous during
cleanout | 3 per year | l event/
campaign | 3546 Stripper | 3546 Stripper
measure | Std.Methods
Std.Methods
G.C./p.d. | | | | | *The specific alkylar
by the product being | | zed for will be | determined | | | | 38 (Endothall Acid) | pH
Furan
Endothall Acid
^{BOD} 5 | composite | 2 grabs per washout | 3 per year | 1 event | 3810 Crystallizer | 3810 Crystal
lizer
meter | - Std.Methods
G.C./p.d.
G.C./p.d.
Std.Methods | i | Proc | cess | Variable | Sample Type | Monitoring
Frequency | Washout
Frequency | Duration | Sampling
Location | Flow Est.
Location | Methods | |------|---|--|-------------|---
----------------------|------------------|----------------------|------------------------------------|---| | 38 | (Dibutyl
Thiourea) | pH
Dibutyl Thiourea
Carbon Disulfide
Burylamine
Hydrogen Sulfide | composite | 2 grabs per washout | 3 per year | 1 event | | 3800 Reactor | Std.Methor G.C./p.d. G.C./p.d. G.C./p.d. Std.Methods | | 44 | (Alkanolamines) | rH Alkylamines* Alkanolamines* Ethylene Oxide* Propylene Oxide* | composite | continuous during
washout | 18 per year | 1 event/campaign | | 44146 Strippe
measur e | r Std.Methods
G.C./p.d.
G.C./p.d.
G.C./p.d.
G.C./p.d. | | | | | | *The specific alkylam
propylene oxide to b
product being run. | | | | | | | 45 | (Diethylhydroxyl-
amine) | pH
Triethylamine
Triethylamine Oxi
Diethylhydroxylam
Phosphorus - tota | ine | 1 per washout | 1 per year | 1 event | 4520 Reactor | 4520 Reactor meter | Std.Methods
G.C./p.d.
G.C./p.d.
G.C./p.d.
Std.Methods | | 46 | (Methane Sulfonyl
Chloride and
Methane Sulfonic
(Acid) | pH
Chlorine
HC1
Methane Sulfonic
Acid | composite | continuous during
washout | 2 per year | 1 event | 4624 Acid Stripper | : 4624 Acid
Stripper
measure | Std.Methoustd.Methods
G.C./p.d. | | | | pH
Chlorine
HC1
Methane Sulfonic
Acid | composite | 2 grabs per washout | 2 per year | l event | 46115 Acid Tank | 46115 Acid
tank measure | Std.Methods
Std.Methods
Std.Methods
G.C./p.d. | | Process | Variable | Sample Type | Monitoring
Frequency | Washout
Frequency | Duration | Sampling
Location | Flow Est.
Location | Methods | |--|---|-------------|--|----------------------|----------------------|----------------------|--------------------------|---| | 46 (Methane Sulfonyl
Chloride and
Methane Sulfonic | pH
Chlorine
HCl
Methane Sulfonic | composite | 2 grabs per washout | 2 per year | l event | 4633 Receiver | 4633 Receiver
measure | Std.Methods
Std. Methods
Std.Methods | | Acid) (Con't.) | Acid | • | | | | | • | G.C./p.d. | | | Methane Sulfonyl
Chloride | | | | | | | G.C./p.d. | | | pi:
Chlorine
HCl | composite | continuous during
washout | 4 per yr. | levent | 4698 Cooler | 4698 Cooler
measure | Std.Methods
Std.Methods
Std.Methods | | | Methane Sulfonic
Acid | | • | | - | | | G.C./p.d. | | | Methane Sulfonyl
Chloride | | | | | | | G.C./p.d. | | 47 (Alkanolamines) | pH
Alkylamines*
Alkanolamines*
Ethylene Oxide*
Propylene Oxide* | composit3 | continuous during
washout . | 18 per yr. | l event/
campaign | 4765 Stripper | 4765 Stripper
measure | Std.Methods
G.C./p.d.
G.C./p.d.
G.C./p.d.
G.C./p.d. | | • | | | fic alkylamines, alkand
e determined by the pro | | ylene oxide or p | ropylene oxide to be | e a nalyzed | | | Pilot Plant | | | | | • | | | | | Batch Distillation | pH
Alkylamines*
Alkanolamines* | grab | l per washout | 10 per yr. | 1 event/
campaign | 4260 Still | 4260 Still
measure | Std.Methods
G.C./p.d.
G.C./p.d. | • | Process | Variable | Sample Type | Monitoring Frequency | Washout
Frequency | Duration | Sampling
Location | Flow Est.
Location | Methods | |------------------------------|--|-------------------------|---|----------------------|----------------------|--|---|---| | Pilot Plant | | | | | | | | | | Batch Distillation (Cont't.) | pH
Alkylamines*
Alkanolamines* | composite | continuous during
warhout | 10 per yr. | l event/
campaign | 4270 & 4271
Receivers | 4270 & 4271
Receivers
measure | Std.Methods
G.C./p.d.
G.C./p.d. | | | | | c Alkylamines and Alka
determined by the prod | | nalyzed | | | | | Pennac NB Ultra | pH
Monoethanolamine
Zinc
N Formylated 4870
4370
Triethylamine
Carbon Disulfide
Toluene
Pennac NB Ultra | composite | 1 grab from 4218
1 grab from 42100
2 grabs from 42116
2 grabs from 42106
2 grabs from 42146 | l per yr. | 1 event | 4218 Reactor
42100 Reactor
42116 Receiver
42106 Reactor
42146 Receiver | 4218, 42100,
42116, 42106
42146 measure | G.C./p.d. | | | Pennac NB Ultra | grab of
Liquid Layer | 1 per washout | l per year | 1 event | Rotary Vac.Filter | Rotary Vac.
Filter measu | | | Pennac NB | pH
Dimethylamine
Diethylamine
Dibutylamine
Carbon Disulfide
Formaldehyde
Thiourea
Hydrogen Sulfide | | l per washout | 1 per 2 yrs. | 1 event | 42100 Reactor & 42104 Reactor | 42100 Reactor
42104 Reactor
measure | G.C./p.d. G.C./p.d. G.C./p.d. G.C./p.d. G.C./p.d. G.C./p.d. Std.Methods | | | Pennac Part A
Pennac Part B | | | | | | | Unknown
Unknown | • • . • | Process | Variable | Sample Type | Monitoring Frequency | Washout
Frequency | Duration | Sampling
Location | Flow Est.
Location | Methods | |---|-------------------------------------|---------------------------------------|--------------------------------|----------------------|----------|----------------------------------|--|---| | Pilot Plant (Con't.) | | | | | | | | | | Hexadecyl
Disulfide | pH
Bromine
HBr
Hexadecyl | grab of
accumulated
wash waters | 1 per washout | l per year | 1 event | 42100 Reactor &
42106 Reactor | 42100 Reactor
&42106 Reactor
measure | Std.Methods
Std.Methods
Std.Methods | | | Mercaptan
Hexadecyl
Disulfide | · . | | | | | | G.C./p.d.
Unknown | | | pH
Bromi ne | composite . | continuous during .
washout | l per year | 1 event | 4280 Vac.Jet | 4280 Vac.jet
meter | Std.Methods
Std.Methods | | Anhydrous Diethylhydroxyl- amine Distillation | pH
Diethylhydroxyl-
amine | |) per washout | l per year | 1 event | 4247 Receiver | 4247 Receiver
measure | Std.Methods
G.C./p.d. | | amine proceedings | Dieth ylamine | wasii waters | | | | | | G.C./p.d. | NOTE: The term "I event/campaign" is intended to indicate that one washout for each different product group will be monitored. It is not intended to indicate that each washout will be monitored. 4655 BIDDLE AVENUE, WYANDOTTE, MICHIGAN 48182 . (313) 285-9200 March 3, 1981 Mr. Robert J. Courchaine Chief, Water Quality Division Department of Natural Resources Stevens T. Mason Building Box 30028 Lansing, MI 48909 Dear Mr. Courchaine: Listed below, by process, are the products which remain to be sampled as part of Pennwalt's Waste Characterization study. | <u>Process</u> | Product | | | | | |----------------|--|--|--|--|--| | 28 | Sodium Hydrosulfide | | | | | | 31 | Hexylamines | | | | | | 35 | Hexylamines | | | | | | 38 | Endothall | | | | | | 46 | Methane Sulfonyl Chloride
Methane Sulfonic Acid | | | | | | 47 | Dimethylamino-2-propanol
Isopropylaminoethanols | | | | | | Pilot Plant | Hexadecyldisulfide | | | | | | Building 26 | Sodium Methanesulfonate
Alkylamines Amylphenol | | | | | The following washouts have been completed since December 30, 1980: | Process | Product | | | |---------|--|--|--| | 44 | Dibutylaminoethanol
Ethylaminoethanol | | | Mr. Robert J. Courchaine Chief, Water Quality Division Department of Natural Resources -2- There have been several changes in production operations since the Waste Characterization study format was written. Diethylhydroxylamine is now produced only in Process 45; the pilot plant operation, with respect to this product, has been terminated. Currently, Processes 44 and 47 clean out with no water being discharged to the sewer. Sincerely, PENNWALT CORPORATION . E. Rhodes Manager, Technical Department JER:blw cc: Paul Zugger David Batchelor Roy Schrameck Jerry 67 Merch 3, 1981 Pennwalt Corporation 3 Parkway Philadelphia, PA 19102 Attention: Mr. Fred Veil Re: Final Order of Abatement No. 1994 # Gentlemen: Please find a copy of an executed Final Order of Abatement No. 1994 enclosed for your records. If you have any questions regarding this matter, please feel free to contact hr. Scott Ross at 517/373-8448. Very truly yours, WATER RESOURCES COMMISSION Robert J. Courchaine Executive Secretary # RJC:RLS:ms cc: Files (2) - J. Bogan, Pennwalt Corp. - J. Tracht, Pennwalt Corp. - F. Baldwin - K. Zollner - T. K. Wu - A. Howard - S. Freeman - J. Bails - R. Schrameck - A. Manzardo, EPA - Data Center, DUR - S. I. Mich. Council of Governments D'02 (1) PIE MUVILLEE S.G.A. #### STATE OF MICHIGAN #### DEPARTMENT OF NATURAL RESOURCES #### WATER RESOURCES COMMISSION IN U.S. W. Link of Apprendix OF Will Collection: Demonals Corp. Wystlette, missinger RPDES PERMIT NO. MI 0002381 FIRAL ORDER NO. 1994 # ET OF COME OF FURTHER session of the Water Resources Cornission on February 19, 1981 Lind, at Lansing Michigan, upon presentation by staff of the Mater Quality Division, and based upon the official files of the Water becomes Commission: - 27 IO 7 U. D. P. 200 FINDING OF FACT of the Mater Resources Commission at a tile light Department of Natural Resources, that Pennwalt Confunction was issued National Pollutant Discharge Elimination System (NPOID) Permit No. NI 0002081 on June 20, 1975, for its
kyanilate (crility in Myandotte, Michigan. Said Permit was revised Elech 3, 1976, and again May 21, 1976. - IT is itelded The EXPRESS FIRDING OF FACT of the Water Perpercus Commission and the Michigan Department of Natural Resources, the Federal Clean Mater Act of 1977 CP.L. 95-217), which amound the Federal Water. Following Control Act Frendments of 1972 (P.L. 92-500), and the Michigan Water Resources Commission Act (Act 245, P.A. 1929 as anomical), require that by no later than July 1, 1977, all discharges to the serfaces waters of the State of Michigan have waste treatment fatilities installed and operating, which conform with Best Practicable Common Technology Correctly Available (B.P.C.T.C.A.) as defined by the United States Invitations necessary to meet the water quality standards of the State of Michigan. - 1: IS FORMARY THE EXPRISS FINDING OF FACT of the Water Resources Commission and the Michigan Department of Natural Resources, that NPDES Permit No. MI Countries contained final effluent limitations and a schedule of compliance to achieve those limitations by July 1, 1977. - IT IS FOLIRLE TOT EMPRISS FINDING OF FACT of the Mater Resources Commission and the Life ipon Department of Natural Resources, that although Featuralt Comparation complied with portions of the schedule of compliance, the company violated the terms and conditions of NPDES Peruit No. NI 6002351 by its continued inability to achieve effluent limitations specified within the permit. - and Michigan Department of Natural Resources, that as a result of these continuing violations, a Final Order of Abateviat, Order No. 1931 was intered in October 1977. Under provisional the Final Order, Pennwalt Corporation immediately paid as liber ated damages the sum of one hundred fifty thousand dollars (\$150.6 . . .) to the general fund of the State of Michigan. Additionally, the Final Order modified the schedule of compliance contained in \$1.00 Permit No. MI 0002381, allowing an extension of time for achieving for Outfalls 003 and 005, and to February 1, 1978, for Outfall 006. - IT IS FURTHER THE EXPR. 38 FUNDING OF FACT of the Water Resources. It is said and the Michigan Department of Natural Resources, that Ponedada Corporation failed to attain the operational level necessary to meet the effluent limitations specified in Final Order No. 1921 in accordance with the schedule outlined therein. - IT IS FORTHER THE EXPRESS FINDING OF FACT of the Water Resources 2 lesson and the Michigan Department of Natural Resources, that unlar or lesions of Final Order 1931, specific to violations of final efficient reductions after required compliance dates, Pennwalt Corporation contributionally made payments of liquidated damages totaling an additional continuously hundred eighty thousand dollars (\$180,000.00). Subsequent violations of the final effluent limitations were violations of the First Order for which the State could seek other and further relief. - IT IS THE EXPRESS FINDING OF FACT of the Water Resources Compission and the Michigan Department of Natural Resources, that in proorfuse with Part 5 Rules of the General Rules of the Water Resources of dission that Pennwalt Corporation is required to submit and implement to Pollution Incident Prevention Plan. - IT IS FURTHER THE EXPRESS FINDING OF FACT of the Water Resources Consision and the Michigan Department of Natural Resources, that Pennya to Corporation submitted a revised Pollution Incident Prevention Flow (PIPP) November 16, 1979 and that said plan included a proposal implementation schedule for construction of additional control and facilities for both the East and West Plants. - IT IS FURTHER THE EXPRESS FINDING OF FACT of the Water Resources Conclusion and the Michigan Department of Natural Resources, that the plantations contained in the United States Environmental Protection Assert (EPA) promulgated guidelines for the Inorganic Chemical indestry subcategory, dated March 12, 1974 and May 22, 1975, are not applicable to the Pennwalt facilities. - IT IS FURTHER THE EXPRESS FINDING OF FACT of the Water Resources Consission and the Michigan Department of Natural Resources, that the Congress continuously measures pH at all its process wastewater discharges. - IT IS IN. IN THE DEPOSES FINDING OF FACE of the Water Resources Commission and the Michigan Department of Matural Resources, that the EPA decrete catified in Michigan Properties Food Michigan Department Limits and Administrative (N. 1999) and Lost Poster Society Michigan Michigan Department Testitates (1. Standards (0.0-9.0) whenever final effluent pll is required to be massured continuously may be beyond the capabilities of EPI and BOT systems." - IT IS FIG. HOR THE EXPRESS FINDING OF FACT of the Water Resources Commission and the Department of Matural Resources, that, as evidenced by the Company's December 18, 1979, demonstration of their existing pil control facilities, the pil limitations contained in this Final Order are appropriate. - FITTIMER THE EXPRESS FINDING OF FACT of the Water Resources Commission and the Michigan Department of Natural Resources, that compliance with the philipatations contained in this Final Order will insure full protection of the State's water quality standards and will protect the State's waters against pollution, impairment, or destruction. - IT IS ACCURE BY ALL PARTIES, the Department of Natural Resources, the Water Leadurces Cormission, and Panavalt Corporation, that in the absence of effective guidelines for pR, it is the judgment of the partie. That is the judgment of the partie. That is the judgment of the partie. That the judgment of facilities installed by the Company cormitate I at Inacticable Control Technology Corrently Available (E.P.C.,C.A.). The parties also recognize that the United States Environmental Protection Agnecy (EPA) has neither made a final determination on this issue nor authorized the inclusion of the pR limitations contained herein in a revised NPDES permit for Pennwalt, and that a final determination by EPA on this issue may require modification of this Final Order or the NDPUS permit. In this event, either party may seek such modification. - IT IS FIRTHER THE EXPRESS FIRDING OF FACT of the Water Resour es Commission and the Michigan Department of Natural Resources, that the Company has reviewed this Consent Order and while neither admitting nor denying that litigation of the issues would have resulted in a finding of the violations referred to in this Order or award of the duarges set forth in this Order, has agreed to its entry as a Final Order of the Water Resources Commission. - 17 IS THEREFORE ORDERED that Final Order of Abatement No. 1931 entered on Ottober 14, 1977 is hereby rescinded. - IT IS FIGURE OCCURRED that NYBUS Permit No. MI 0002381 issued on June 20, 1979, as subsequently revised, is in full force and effect except that compliance with Section A of this Final Order constitutes compliance with Part I, Section A of the NYDES permit until NPDES Permit No. MI 0002381 is reissued, suppended, rescinded or revoked. # SECTION A EFFECUENT CONDUCTIONS AND MONITORING REQUIREMENTS IT IS FURTHER ORDERED that Pennwalt Corporation shall comply with the following restrictions and conditions: #### 1. Final Effluent Limitations During the period beginning on the effective date of the Final Order and lasting until the expiration of authorization under this Final Order, the permittee is authorized to distribute up to a maximum of eight million one hundred theu and to. 1,000 gallons per day of noncontact cooling water from Outsall 1. Such discharge shall be limited and monitored by the perfect as apecified below: | | Dich | arge Limita | at i ons | | | | |------------------|----------|-------------|-----------|-----------|--------------------|-----------------------| | | kg/day (| | Other Lin | mitations | <u>Mani</u> tiri i | 1 1/25 F15 | | Effluent | Honthly | Daily | Monthly | Daily | Reduction at | 3 | | Charactgristics | | Maximum | Average | Maximum | 3x 1000v | <u> 5214</u> | | Flow, M /Day (MC | co) | | | | 3x Weelly | - | | Total Suspended | Solid: | | | | Weekly | Grab | | Total Residual | Chlorine | | | | Weekly | Crsb | | Ammonia (as N) | | | | | Weckly | Crab | | Chlorides | | | | | Weckly | Crub | | Oil & Grease | | | No Visib | le Film | Daily | Visua'
Observation | | Temperature | | | | | Weekly | Reading | | COD | | | | | Weekly | C.as | The term noncontact cooling water shall mean water used for cooling which does not come into direct contact with any raw material, incommissione product, by product, waste product, or finished product. - a. The pli shall not be less than 6.0 nor greater than 9.0. The pH shall be monitored as follows: weekly; grab. - b. The discharge shall not cause excessive foam in the receiving waters. The discharge shall be essentially free of floating and settleable solids. - c. The discharge shall not contain oil or other substances is amounts sufficient to create a visible film or sheen on one receiving waters. - d. Samples taken in compliance with the monitoring requirements above shall be taken at Outfall 001 prior to discharge to Wye Street storm sewer. - Treatment additives the permittee shall require the use of Water Treatment additives the permittee shall notify the Michigan Water Resources Commission in accordance with the requirements of Part II, Section A-1 of NPDES Permit No. MI 0002361. #### 2. Pigal Effluent Limitations During the period beginning on the effective date of this Final Other and lasting until the expiration of authorization under this Final Otder, the permittee is authorized to discharge up to a maintain of seventree million nine handred thousand (17,900,000) gullons per day of contact cooling water, process water, and noncontact cooling water from Outfall 002. Such discharge shall be limited and monitored by the permittee as specified below: | | Discharge | Limitations | | • | |-----------------
---------------------|-------------------|----------------|-----------------------| | | Va/d. v (1bs/day) | | Monitoring Re- | | | Efflu at | Montaly Daily | Honthly Daily | Measurement | Sample | | Chiefatariștie | Arcrace Maximum | Average Maximum | Frequency | Туре | | Flex, !! /Day (| ::Gu) | | 3x Weckly | | | C rides | | | 3x Weekly | 24 Mr. Comp. | | å Grease | • | No Visible Film | Daily | Visual
Observation | | Temperature | | | Daily | Reading | | cco | · | | 3x Weekly | 24 Hr. Comp. | | Total Stephade | d | • | | | | | 4103(9046) 8206(185 | 192) | 5x Weekly | Grab | | Amonia (as N) | | 1.4 mg/1 2.3 mg/1 | 3x Weekly | 24 Hr. Comp. | | Total Residual | Chlorine | 1.0 mg/1 1.5 mg/1 | Daily | Grab | | Total Lead | 0.6(1.37) 1.25(2.75 | j | Twice Monthly | 24 Hr. Comp. | The term numerontact cooling water shall mean water used for cooling which does not come into direct contact with any raw material, intermediate product, by-product, waste product, or finished product. - a. The ph shall be within the range of 6.0 to 9.5, 90% of the time; within the range of 5.0 to 10.0, 95% of the time; within the range of 3.0 to 11.0, 99% of the time; within the range of 2.0 to 12.0, 100% of the time during a 24 hour period beginning on or about 7:00 a.m. of each day. The pil shall be monitored as follows: continuous; report the maximum and minimum and percent of time within each range during the above 24 hour period. - b. The discharge shall not cause excessive form in the receiving unters. The discharge shall be essentially free of floating and settleable solids. - c. The discharge shall not contain oil or other substances in accounts sufficient to create a visible film or sheen on the receiving waters. - d. Samples taken in compliance with the monitoring requirements above shall be taken at Outfall 602 prior to discharge to the Detroit River. - e. In the event the permittee shall require the use of Water Treatment additives, the permittee shall notify the Michigan Water Resources Commission in accordance with the requirements of Part II, Section A-1 of NPDES Permit No. MI 0002381. #### 3. Final Ellluent Limitations During the period beginning on the effective date of the Final Order and lasting until the expiration of mathematical under this Final Order, the permittee is authorized to all before up to a maximum of nine million eight headred them as the spoor gallons per day of contact cooling water, process water, relading waste water from the cell room, and noncontact cooling water from Outfall 003. Such discharge shall be limited and minimored by the permittee as specified below: | Effluent
Characteristics | kg/day (lbs/day)
Honthly Daily
Average Maximum | | Limitations
Daily
Maximum | Heater . : | | |-----------------------------|--|-----------|---------------------------------|----------------|-----------------------| | Flow, M3/Day (M | (43 | | | 3x Weekly | | | Chlorides | | | | 3x Weekly | 24 Mr. Corp. | | Oil & Grease | | No Visibl | e Film | Daily | Visus)
Observation | | Temperature | | | | Daily | Rending | | Total Suspended
Solids | 1481(3266) 2963(65 | 32) | | 5x Weekly | Grab | | Ammonia (as N) | | 3 mg/l | 5 mg/l | 3x Wealthy | CV Hr. Comp. | | Total Copper | | | 1\gm 0.1 | Twice Montilly | 24 Mr. Comp. | | Total Lead | 0.45(1.0) 0.9(2.0) | | | Twice Monthly | 24 Mr. Comp. | | Total Residual (| Chlorine | 1.0 mg/1 | 1.5 mg/l | Daily | Grab | The term noncontact cooling water means water used for cooling which does not come into direct contact with any raw material, intermediate product, by-product, waste product, or finished product. - a. The pll shall be within the range of 6.0 to 9.5, 90% of the time; within the range of 6.0 to 11.0, 99% of the time; and within the range of 2.0 to 11.0, 100% of the time during a 24 hour period beginning on or about 7:00 disc of each day. The pH shall be monitored as follows: continuous; regard the maximum and minimum and percent of time within each range during the above 24 hour period. - b. The discharge shall not cause excessive foam in the receiving waters. The discharge shall be essentially free of floating and settleable solids. - c. The discharge shall not contain oil or other substances in amounts sufficient to create a visible film or sheen on the receiving waters. - 4. Samples taken in compliance with the monitoring requirements above shall be taken at Outfall 003 prior to discharge to the Detroit River. - e. In the event the permittee shall require the use of Pitter Treatment additives, the permittee shall notify the Pitchick Water Resources Consission in accordance with the requirements of Part II, Section A-1 of NPDES Permit No. NI 0002361. #### . Final Effluent Limitations Final Gover and lasting until the expiration of authorization under this Final Order, the permittee is authorized to discharge up to a maximum of two million three hundred thousand (2,300,000) gallons per day** of process water, including ferric chloride process water from Outfall 005. Such discharge shall be limited and monitored by the permittee as specified below: | | | | Limitatio | | | | | |-------------------------------|----------|-----------|-----------|----------|-------------------------|-----------------------|--| | | | bs/dav)** | | | Monitoring Requirements | | | | Effluent | • | Daily | • | • | Measurement | Sample | | | Characteristics | Average | Maximum | Average | Maximum | Frequency | Type | | | Flow, M ³ /Day (MG | (מ | | | | Continuous | | | | To ispended 5 kds* | 212(467) | 425(934) | 35 mg/l | 70 mg/l | 5x Weekly | Grab | | | co o | | 821(1801) | | | 3x Weekly | 24 Hr. Comp. | | | Armonia (as N) | | | 1.0 mg/l | 1.5 mg/l | 3x Weekly | 24 Hr. Comp. | | | Total Residual
Chlorine | | | 1.0 mg/1 | 1.5 mg/l | Daily | Grab | | | Chlorides | | | | | 3x Weckly | 24 Hr. Comp. | | | Total Load | 0.6(1.4) | 1.2(2.7) | 0.1 mg/l | 0.2 mg/l | Twice Honthly | 24 Hr. Comp | | | Oil & Grease | | | No Visibl | e Film | Daily | Visual
Observation | | | Temperature | | | | | Daily | Reading | | - The above limitations for Total Suspended Solids may be modified to not value upon demonstration to the Chief of the Water Quality Division of the Michigan Department of Natural Resources that gross values are unattainable due to technical or economic considerations. Such modification shall be made in accordance with Part II, Section B-4 of NPDES Permit 3002381. - ** kz/day (los/day) values are not related to flow volume. - a. The pH shall be within the range of 6.0 to 9.5, 90% of the time; within the range of 5.0 to 10.0, 95% of the time; within the range of 3.0 to 11.0, 100% of the time during a 24 hour period beginning on or about 7:00 a.m. of each day. The pH shall be monitored as follows: continuous report the maximum and minima and percent of time within each range during the above 24 hour period. - b. The discharge shall not cause excessive foam in the receiving waters. The discharge shall be essentially free of floating and settleable solids. - c. The discharge shall not contain oil or other substances in amounts sufficient to create a visible film or sheen on the receiving waters. - d. Samples taken in compliance with the monitoring requirements above shall be taken at Outfall 605 prior to mixing with effluent from the Wyandotte-Wayne whate water treatment plant. #### 5 Final Effluent Limitations - Total Chloride Loadine During the period beginning on the effective date of the Final Order and lasting until the expiration of authorized and under this Final Order, the permittee is authorized to the edge contact cooling water, baroactric condenser water, nonzerous cooling water and process water from Outfalls 001, 602, 700, and 005. Such discharges shall be limited and monitored by the permittee as specified below: | Effluent
Churacteristic | <u>kg/day (los/day)</u>
<u>Daily Maximum</u> | Programme Transfer St. | Starpte
Tript | |----------------------------|---|------------------------|------------------| | Total Combined Outf | alls 001, 002, 003 and 005: | | | | Chlorides* | 227,000(500,000) | 3x Whekly | Calculat | * The above limitations for chlorides may be modified to a net value upon demonstration to the Chief of the Water Quality Division that grows values are unattainable due to technical or economic considerations. Such modification shall be made in accordance with Part II, Section B-4 of NPDES Permit No. MI 0002381. #### 6. Final Effluent Limitations Total Zinc During the period beginning on the effective date of this. Final Order and lasting until the expiration of authorized to the large under this Final Order, the permittee is authorized to the large up to a maximum of ten million (10,000,000) gallous per the of noncontact cooling water, barometric condenser water of process water from Outfall 006. Such discharge shall be likited and monitored by the permittee as specified below: | | | Discharge | | | | | |-------------------------------|-------------------|--------------------|-----------|----------|-----------|-----------------------| | | kg/day(1b | | Other Lin | | Monitorin | | | Effluent | Monthly | Daily | Monthly | Duily | Невыште п | • | | Characteristic | Average | Maximum | Average | Maximum | Freewart | _ <u>Tupa</u> | | Flow, M ³ /Day (MG | (ס | | | - | 3x Washly | | | BOD ₅ | 661(1457) | 967(2133) | | | 3x Hackly | 24 Hr. Comp. | | COD | | | • | | 3x Weekly | 24 Hr. Comp. | | Total Suspended
Solids | 173(380)
(net) | 259(570)
(net) | | | 3x Weekly | 24 Вс. Содр. | | Chlorides | | 4000(8300
(net) |) | | 3x Weekly | 24 Hr. Comp. | | Ammonia (unionia | zed) | | | 0.2 mg/l | 3x Weekly | Grab | | Total Residual (| Chlorine | | | 0.5 mg/l | 3x Weekly | Gr4b | | Phenol | | 4.5(10) | | 0.2 mg/1 | 3x Weekly | 24 Hr. Comp. | | Sulfide | | | | | Weekly | 24 Hr. Comp. | | Temperature | | | | | 3x Weekly |
Feading | | Oil & Grease | | | No Visib | le Film | Daily | Visual
Observation | 1.0 mg/1 Twice Moathly 24 Hr. Comp. kg/day (lbs/day) values are not related to the flow volume. - 2. The pil chall be within the range of 6.0 to 9.5, 90% of the time; within the range at 5.0 to 10.0, 100% of the time during a 24 laser period beginning on or about 7:00 a.m. of each day. The pictual be manitored as follows: continuous report the control of him within each range during the above 24 hour period. - b. The discharge shall not cause excessive foam in the receiving vaters. The discharge shall be essentially free of floating and settleable solids. - c. The discharge shall not contain oil or other substances in amounts sufficient to create a visible film or sheen on the receiving waters. - Samples taken in compliance with the monitoring requirements above shall be taken at Outfall 006 prior to discharge to Monguagen Creek. - 7. Intake Monitoring Requirements During the period beginning on the effective date of this Final Order and lasting until the expiration of authorization under this Final Order, the permittee shall monitor the intake as specified below: | | Maniforing Requirements | | | | | |------------------------|---------------------------|----------------|--|--|--| | | Montantenent
Frequency | Surfle
Type | | | | | Convertistic | Trefficient | | | | | | BGD _S | Weekly | 24 Nr. Comp. | | | | | Total Suspended Solids | 5x Weekly | 24 Hr. Comp. | | | | | Chile ides | 3x Weekly | 24 Hr. Comp. | | | | | COD | 3x Weekly | 24 Hr. Comp. | | | | - a. Samples taken in compliance with the monitoring requirements above shall be taken of the intake after initial screening. - Linditations, Monitoring and Reporting Requirements for Deep Disposal Wali Beginning upon the issuance of this Final Order and lasting until the expiration of authorization of this Final Order the printitee shall dispose of previourly authorized wastewaters into an approved strata by means of disposal wells which shall be equipped, tested, and operated in conformance with the requirements of the Mineral Wills Act, Act 315. Public Acts of 1929 and Act 256, Public Acts of 1929, as amended, and the rules promulgated thereunder. The company shall submit testic Chief of the Mater Quality Division and obtain his approval of its contingincy plan for periods of outage of the deep well disposal system. Any outage of the deep well disposal system shall be imadiately reported to the Chief of the Mater Quality Division and the Geological Survey Division Supervisor of Waste Disposal Wells. #### Martin tax Bounds come for by a Hill Blomman | PARAMETER
Wellhead Pressure | (None set) | FREOTENCY
Weekly | $\frac{TV_{i+1}}{P_{i+1,j}}$ | |--------------------------------|------------|---------------------|------------------------------| | Flow Rate | | Weekly | CTM variety (Cate) | | Flow Total | | Monthly | KG/MMM (Lest day) | | Total Suspended Solids | | Weekly | 6/1000 [.1 (Grab) | The disposal to the deep well is limited to currently authorized discharges. Any new discharges to the deep well shall be done in accordance with Part II-A-1 of NODES Penait No. MI 0002381. The above authorization pertains to the deep well disposal units to permitted by the Geological Survey Division of the Michigan Depart and of Natural Resources. | | Well No | |---|---------| | | 4-049 | | • | 6-049 | | | 15-047 | | | • | #### Reporting Requirements for Deep Well Disposel The permittee shall comply with the following reporting in according with the schedule under C of NPDES Permit No. M1 0002361, Schedule of Compliance - Deep Well Disposal. - a. Submit contingency plans for periods of outage. - b. Submit a completed Michigan Discharge Permit Application and a "Well and Reservoir Data on Underground Induction Mestal Disposal Systems" form (as approved by the Geological Stryig Division of the Department of Natural Resources) for each disposal well to the Chief of the Water Quality Division Department of Natural Resources on or before N/A. Review of the discharge(8) to the deep disposal well(a) will be made upon receipt of the application. Any modification in the disposal well requirements of the permit will be made in accordance with Part II--- 4 of NPDES Permit No. MI 0007381. #### SECTION B POLLUTION INCIDENT PREVENTION PLAN IT IS FURTHER ORDERED that Pennwalt Corporation implement the apprecial Pollution Incident Prevention Plan in accordance with the following schedule: #### 1. West Plant - Secondary Containment (Diked Tanks) 1.) The Company has submitted and received approval of a final design, typical of the facilities to be constructed. - 2.) Complete construction by November 1, 1981. - Spillage Containment (Tank Car and Tank Trailer Building No. 49 Unloading/Loading) The Company has submitted and received approval of a final design, typical of the facilities to be constructed. - 2.) Complete construction by August 1, 1981. - Spillage Designage Prevention (Tank Car and Tank Trailer Loading/Unloading) 1.) The Company has submitted and received approval of a result occupant, typical of the factiveies to be constructed. - 2.) Complete construction by October 1, 1981. - In-Process Containment Facilities (Sump and Valves) 1.) Indictal and approval of a final design, typical of the facilities to be constructed, by March 1, 1961. - 2.) Complete construction by June 1, 1982. - e. Vacuum Trailer - 1.) A vacuum trailer is on site and operational. #### 2. East Plant - Secondary Containment (Diked Tanks) 1.) The Company has submitted and received approval of a final design, typical of the facilities to be constructed. - 2.) Complete construction by August 1, 1981. - Secondary Spill Prevention (Dry Monts) The Company has submitted and received approval of a final design, typical of the facilities to be constructed. - 2.) Complete construction by November 1, 1981. - Alternate Containment Program (Undiked Tanks-Plugs) 1.) The Company has submitted and received approval of a final Jesign, typical of the facilities to be constructed. - 2.) Complete construction by October 1, 1931. - d. Spillage Containment (Tank Trailer Unloading) 1.) The Company has submitted and received approval of final design, typical of the facilities to be constructed. 2.) Complete construction by September 1, 1981. - Spillage Drainage Prevention (Tank Car and Tank Trailer). The Company has submitted and received approval of a final design, typical of the facilities to be constructed. - 2.) Complete construction by August 1, 1981. - Alternate Containment Program (In-Process) Submitted and approval of a final design, typical of the facilities to be constructed, by June 1, 1981. - 2.) Complete construction by September 1, 1982. - Liquid Ferric Sludge (Defluidizing Pad) Subpitted and approval of a final design, typical of the facilities to be constructed, by April 1, 1981. - 2.) Complete construction by September 1, 1981. Rolliter than 14 calendar days following any of the dates for constitution of construction identified in the above schedule of compliance, to construct a written ration of compliance as proposed in the latter case, the notice shall include the cause of non-applicate, any remedial actions taken and the projected date for completion of IT IS FURTHER OUDERED that Pennwalt Comporation submit progress (c) onto on before July 1, 1981, January 1, 1982, July 1, 1982, and Juneary 1, 1983 regarding the status of implementation of the Pollution Leident Prevention Plan. #### SECTION C PROCESS WASTEWATER CHARACTERIZATION STUDY Pennwalt Corporation shall conduct a Process Wastewater Character, without Study in accordance with Attachment "A" hereto in accordance with the following: - Submit an approvable schedule to implement the Wasterneter Characterization Study, Attachment "A" to the Chief of the Water Quality Division on or before July 31, 1980. The Chapary has submitted a schedule which is under review. - Submit a listing of parameters by process, for which conditions procedures are currently not available, to the Chief of the Water Quality Division on or before July 31, 1980. The Chief has submitted this listing. - 3. Submit an approvable detailed analytical procedure for a parameter identified in 2, above to the Chief of the long Quality Division by date of entry of this Final order, energy as provided in 4, below. The analytical procedures optical by the Chief of the Water Quality Division shall be utilized in the process wastewater characterization study. The colony has submitted a proposed analytical procedure for the 1, ralkylamines through di-n-butylamine which is under review. - 4. Where analytical procedures cannot be developed for any promoter(s) the Company shall submit detailed document ion of utilization develop such procedure(s) and a proper for additional research to accomplish same, including an implementation the claim, to the Chief of the Water Quality Division on or before Torong 28, 1981. Any additional research to develop analytical procedures must receive the approval of the Chief of the Water Godfley Division. Termination of attempts to develop analytical procedures must receive the approval of the Chief of the Water Couldry Division. - Submit a progress report to the Chief of the Water Quality Division detailing the actions the Company has taken to a ply with this section. Said report shall be submitted by no later than February 28, 1981. - Submit the results of the Process Wastewater Characterization Study to the Chief of the Water Quality Division on or because April 30, 1981. #### SECTION D CONCLUSION IT IS AGREED that the entry of this Final Order is in settlement for violations of NPDES Permit No. NI 0002381 and Final Order of Monter of F.O. 1931. The entry of this Final Order completes the Company's obligations under the Final Order (o. 1931 and supercedes and rescinds Final Green No. 1931. The Februarit Corporation agrees that but for this Final Order, the Company model he
subject to the could manufar measuring arounded by law for failure of the Company to be in full compliance with the terms and confidence of the Company to be in full compliance with the terms and confidence of the STS, and the information and the Pepartment hereby agree to the STS, and figurated damages paid on October 10, 1977, and the lightened and the payment to Final Order No. 1931 totaling the STS, and including the \$30,000 accompanying this settlement, the total of the above representing a payment of \$500,000, constitute fair softlement for the above alleged violations and completely satisfy the Company's obligations under Final Order of Abatement No. 1931. This settlement is not a release or waiver of liability for environmental decide or resource impairment that has or may result from past, current or future Company operation. The Company agrees, however, to pay the following liquidated damages for failure to comply with the conditions of this Final Order: - 1. For those days beyond the date of entry of this Order, until May 31, 1981, any discharges from Outfalls 002, 003, 005, or 606 that are in violation of the final effluent limitations for the respective outfalls specified herein, \$2,000 per day. Any pd excursions of 15 minutes or less duration shall not be subject to this \$2,000 per day payment provision. All excursions, however, are subject to appropriate enforcement action. - 2. O: June 30, 1931 the Company shall notify the Department of Enteral Renounces in writing for each may since the date of entry of this Order for which the \$2,000 is payable under this sobjection or this Order, and the Company shall contemporaneously pay such amounts (if any) then accound to the State. - 3. A violation of the final effluent limitations for Outfalls CO2, CO3, CO5, or CO6 after the date of entry of this Order is a violation of this Final Order. The State may seek other and further relief for noncompliance conducted after any final compliance date specified in this Order. Permuelt Corporation is hereby put on Notice by this Commission that any meterial fullure to comply with this Final Order may result in prompt entercomment action. A violation of any date in any of the schedules of compliance specified herein is a violation of the Total Order. bing in this Order is intended to or shall deprive Pennwalt Corporation to right or privilege to petition the Water Resources Commission or such other authority as may be appropriate for review of any matters relating to this Final Order. This Final Order is entered on February 19, 1981 direction of the areary in Marce account a of the Department of Natural Resources and shall expire July 1, 19-3. The authorizations to discharge pursuant to Section A of this First on Pennailt Corporation's application dated Hovember 30, 1979 for relationace of RPDES Cermit No. MI 0002381. The Commission and the Department retain jurisdiction to mostly this Order or enter such further Orders as the fact and circumstances may warrant. WATER RESOURCES COMMISSION PENNGALT CORPORATION Robert S. Custer Vice President - Chemicals Dated: 1-24-51 Dated: 2-11-81 Approved as to Substance: MICHIGAN DEPARTMENT OF NATULAL MICHIGAN DEPARTMENT OF NATURAL RESOURCES RESOURCES Environmental Enforcement Division Howard A. Tanner, Director Approved as to Form: Dated: Fabruary 26, 1941 Frank J. Kelley Attorney General | | V. 1.01a | ar yata kwa s | Months (ag Service) | Domatics : | foreling
for lies | Flow Dom.
Location | Methods | |---------|--|--|--|---------------------|-----------------------------------|--|--| | | of the distribution | fourea
icurea -
thiou rea | Commission of the commission of the commission of the control of the
commission t | | | Proprietation culture to the culture to the water to the culture t | 104. Act Ad. 5.0./p.d 6.0./p.d 6.0./p.d 6.0./p.d 6.0./p.d 5.0./p.d 5.0./p.d 5.0./p.d | | (Amine) | РĦ | grab | 1 grab every Shr/batch | 5 days* | Stripper ^d)
(3146) | Stripper ⁽⁾
(3146) | Std. Het lods | | | pH
armonia
alkylamines
alkonolamin | | continuous 24-hr. | 5 days* | Stripper ^d) (3146) | Stipper ()
(3146)
measure | Std. Met ods
Std. Met ods
ASTM (Am ne | | | monitoria | is will be conduc | nding on production schedule. For Eated in accordance with the above duri
or alkanolamines to be analyzed for w | ing each day of nec | duction. | • | gr up) G.C./p.d (Individ al amines) | (Alkylamines) Eç 3 grabs/24-hr. 5 days* Stripper Stripper Std. Met ods (3546) Stripper (3546) (3545) -casure ρħ composite continuous 24-hr 5 days* Stripper Std. Meticos (3546) ressure a--onia alk/lamines*** Std. Meticds ASTM (Amine group) * For each product run depending on production schedule. For each product run for less than a 5 day-period, monitoring will be conducted in accordance with the above during each day of production. ***The specific alkylamines to be analyzed for will be determined by the product being run. d) Wastestream from stripper 3146 discharged only during vacuum discillation | 35 S | Variable | Sample Type | Monitoring Frequency | Duration | Sampling
Location | Flow Est.
Location | Methods | |-------------|---|-------------------|------------------------------------|---|----------------------------|--|--| | Endoth | all pH | grab | 3 grabs/8 hr. | 3 events | ¥3 Manhole* | #28 Manhole* | Std. Mathe is | | (bloc | pH
furan
endothall
EOD ₅ | | | 3 days | #28 Manhole* | #28 Manitole* | Std. Methols
G.C./p.d.
G.C./p.d.
Std. Mathols | | Dibuty | 1 pH | grab | 3 grabs/12 hr. | 3 events | #18 Manhole* | #28 Manhole* | Std. Metho is | | thicur | hioures) pa composite dibutylthioures carbon disulfide butylanine hydrogen sulfide | | (equally spaced) continuous 24-hr. | 3 days | #23 Manhole* Kanhole #23. | #28 Manhole* | Std. Methods G.U./p.d. G.U./p.d. G.U./p.d. G.U./p.d. Std. Mathods (sulfide:) | | 416220 | lamines) | nt to be shutter. | Cotting first feet and proce ore a | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | M1.44.10 | pH PH | grab | 1 grab every 8 hr/24-hr* | 3 days | 44146 Stripper | 44146 Stripper
measure | Std. Methods | | | pΗ | grab | 1 grab every 8 hr/24-hr* | 3 days | Vac jet | Vac jet
Est. calculation
(design cata) | Std. Hethods | | | pH
alklamines
alknolami
ethylene o
propylene | neska
wideata | continuous 24-hr* | 3 days | 44145 Stripper | 44146 Stripper
measure | Std. Meth.ds
G.C./p.d.
G.C./p.d.
G.C./p.d.
G.C./p.d. | | | pH
alighterine
alighterine
aligheres | .A 10 €# | continuous 24-hr* | 3 days | Vac jet | Vac jet
Est. colculation
(design data) | Std.Metho s
G.C./p.d.
G.C./p.d.
G.C./p.d.
G.C./p.d. | * Let's the chief of propagation and all another trade analyzed for will be determined by the product being run for the contract of contra | · | Varia ble
 | Sample Type | " With Mag Frequency | Cyratica | Smoling
Lit Alon | Flow Fol.
Location | iinthada
 | |---|---|-------------|--|--|---|--|---| | Interprise production (inc.) | to thylogical to the through a through phosphorus - to | | l contyler wash mater
(I must per wash
cyclet)
his core than 165g.
total wash mater
none grabs will be co | | 1020 Filter
westlings | 6026 Files
Weshings
measure | Std.Michelds
G.C./p.d
G.C./p.d
Std.Metheds | | | На | grab | 1 grab every 8 hr/day | 3 days | 4531 Vac jet | 4531 yes jet | Std.Methi ds | | | pH
tricthylanice
tricthylanics
dicthylhydroxyl | | continuous 24-hr. | 3 days | 4531 Vac jet | measure
4631 Vac jet
measure | Std.Methids
G.C./p.d
G.C./p.d
G.C./p.d | | | pH
triethylamine
triethylamine o
dlethylhydroxyl
phosphorous - t | amine | l grab/wash.cycle | 3 days | 4522 & 4553
Wash receivers | 4522 & 4533
Wash receivers
meter | Std. Yeth ds
G.C./p.d
G.C./p.d
G.C./p.d
Std. Meth: os | | Tethane Sulfonyl
Chloride and,
Methane Sulfonic | pH
HC1 | grab . | l grab during
trailer loading | 3 events | 4659 HC1
Scrubber | 4659 HCl
Scrubber
measure | Std.Methods
Std.Methods
(titration) | | Acid) | PH
HC1 | grab | f grab during
normal venting
w/o trailer loading | 3 events | 4659 HCl
Scrubbe r | 4659 HCl
Scrubber
measure | Std.Methids
Std.Methids
(titration) | | | pH
HC1 | composite | continuous 24-hr | l day | 4659 HCl
Scrubber | 4659 HCl
Scrubber
measura | Std.Meth ds
Std.Meth ds
(titration) | | | рH | grab | 1 grab every 8 hr. | l day | 4532 Vac jet | 4632 Vac jet
measure | Std.Methids | | ;;
• | pH
methylmercaptam
chlorine
methane sulfony
chloride | | continuous 24-hr | 3 days | 4632 Vac jet | 4632 Vac jet
measure | Std.Methids
G.C./p.d
Std.Methids
G.C./p.d | | | · . · · · · · · · · · · · · · · · · · · | | | | | | | | cs s | Variable | Sample Type | Monitoring Frequency | Duration | Sampling
Location | Flow Est.
Location | Methods | | ont'd, | рн | grab | 1 grab every 8 hr | l day | 4628 Condenser
(chlorine recycl | 4628 Condonser
e) measure | Std.Methods | | | pR
chlorine
mothyl mercaptan
mothane sulfonyl
methane sulfonic | chloride | continuous 24-hr | 3 days | 4528 Condenser | 4628 Conienser .
measure | Std. Methods Std.Methods G.C./p.d. G.C./p.d. G.C./p.d. | | Alkanolamines) | pit | grab | 1 grab every 8 hr | 3 days | 4765 Stripper | 4765 Stripper | fid.Methods | | | pH
alkylamines*
alkanolamines*
athylene onide** | composite | continuous 24-hr | 3 days | 4765 Stripper | measure
4765 Stripper
measure | Std.Methods
G.C./p.d.
G.C./p.d.
G.C./p.d. | | • | or
propylene oxide** | | *specific alkyl ari alkanol amines to be analyzed are
determined by amine comparign being run
** either ethylene oxide or propylene oxide
will be analyzed depending on amine comparing being run | | run
e oxid a | | G.C./p.d. | | | | • | and or amplyers are | | | | | | | рĦ | grab | 1 grab every 8 hr | 3 days | · Vac jet | Vac jet
Est. calculation
(design data) | Std.Meth is | | · | pH of kylamines* alkanolamines* ethylene exide** or | grab | · | 3 days
(Ikanol umines
campaign being | Vac jet
to be analyzed are
; run | Est. calculation | Std. Met ieds
G.C./p.d.
G.C./p.d.
G.C./p.d. | | | pH
alkylaminea*
alkanolaminea*
ethylene oxide** | corposite | 1 grab every 3 hr continuous 24-hr * specific alkyl and a determined by amine | 3 days Ikanol amines compaign being or propylene | Vac jet
to be analyzed are
prin
oxide | Est. calculation (design data) Vac jet Est.c. iculation | Std. Met lods
G.C./p.d.
G.C./p.d. | | | pH
alkylamines*
alkanolamines*
ethylene exide**
or
propylene exide*! | composite | 1 grab every 3 hr continuous 24-hr * specific alkyl and a determined by amine *meither ethylene oxid, will be consilyed dependently being run. | 3 days Ilkanol amines compains being or propylene conding on emin | Vac jet
to be analyzed are
; run
oxide
ne | Est. calculation (design data) Vac jot Est. colculation (design data) | Std. Meticds G.C./p.d. G.C./p.d. G.C./p.d. | | t Plant | pH
alkylamines*
alkanolamines*
ethylene exide**
or | corposite | 1 grab every 3 hr continuous 24-hr * specific alkyl and a determined by amine *settler ethylene exid, will be canalyzed department. | 3 days Ikanol amines compaign being or propylene | Vac jet
to be analyzed are
prin
oxide | Est. calculation (design data) Vac jet Est.c. iculation | Std. Met ieds
G.C./p.d.
G.C./p.d.
G.C./p.d. | alkelaninest all rot ateses Aspectite addyt and alternativation to be mady: - "If he determined by Landing to the grant of 0.0./p.d 3.0./p.d Std. Not 1913 | | And of | f in Ty, w | Participal Control | Sub-tie- | 1 (11mg
1 (11m | The t.
Location | | |---------------------------------------
--|----------------------------|-------------------------------------|-----------|--------------------------------|--|--| | · · · · · · · · · · · · · · · · · · · | | , - te | Contract Constitute | 3 latri : | 47 1 % in Tet | Alvanto de servicio de la composición dela composición de la composición de la composición dela composición dela composición dela composición de la composición dela comp | or Arter | | a Prior Plust) | included to the state of st | | entling in elica | 3 base. | 41 <u>2</u> 4 . 1 . | en i vilia di Silandia Sila | didity of the tent | | | рИ | grab | 1 per filter cycle (3 per batch) | 3 events | Filter
(washwater) | Measure wash-
water volume | Štd.Met.ods | | | pH
monoethannlamine
zinc
% formylated 487/
4870
triethylamine
carbon disulfide
toluene
Pennac NB Ultra | | centinuous, 1 per
leaction batch | 3 events | Filter
(vastevater) | Measure wash-
water volume | Std.Methods G.C./p A.A. Sp ctro. Unknown Unknown G.C./p G.C./p G.C./p Unknown | | decyl
lfide | pH
bromine
hexadecyl-
mercapten | composite
during charge | continuous, 1 per
ing batch | 3 evenis | 4828 Vac Jet | 4282 Vac jet
meter | Std.Met lods
Std.Met lods
G.C./p. 1. | | | pH HBr hexadecyl mercap hexadecyl disulf bromine | | continuous, 1 per batch | 3 events | 4280 Vac jet | 4230 Vac jet
meter | Std.Met.ods
Std.Met.ods
G.C./p. I.
Unknown
Std.Met.ods | | | pil | composite | continuous, l per | 3 events | 42100 Reactor
(Water layer) | 42100 Reactor
(Water layer) | Std.Met rods | | | hexadecyl disulf
hexadecyl mercap | | | | | measure volume | Unknown
G.C./p.1.
Std.Met :eds | | • | bromine | : | | • | | | Std.Met ads | | • | | | | | | | | |---------------------------------|--|---------------------|--|-----------|----------------------|--------------------------------------|--| | | Variabl e | Sample Type | Monitoring Frequency | Duration | Sampling
Location | Flow Est.
Location | Kethods | | из | 2H | grab | every 3 hrs. during
scripping operation | 3 events | 4232 Vac jet | 4282 Vac jet
meter | Std. Methods | | t Plant) | • | | | | | | | | | pH
dimethylamine
diethylamine
dibutylamine
carbon disulfide
formaldehyde
Pennac Part A
hydrogen disulfi | | continuous, 1 per
batch | 3 events | 4282 vac jet | 4282 Vac Jet
meter | Std.Mathcds
G.C./p.d.
G.C./p.d.
G.C./p.d.
G.C./p.d.
G.C./p.d.
Unknown
Std.Mathcds | | NB | ья | grab | every 3 hrs. during stripping operation | 3 events | 4282 Vac Jet | 4282 Vac jet
meter | Std. Mothods | | Iot Plant) | pli
dinethylamine
dibutylamine
carbon dirulfide
formalehyde
thicurea
hydrogen dirulfic
Pennac Part B | | continuous, 1 per
batch | 3 events | 42S2 Vac jet | 4292 Vac jet
meter | Std.Methc is
G.C./p.d.
G.C./p.d.
G.C./p.d.
G.C./p.d.
G.C./p.d.
Std.Methc is
Unknown | | ou s | | | | | | | | | Nydroxylam ine
Diston | Prq | grab | I every 8 hrs/24hrs | 3 days | 4202 van jet | 4282 Vac jet
moter | Std.Motho is | | ot Plant) | • | composite | continuous 24 hour | 3 days | 4282 Vac jet | 4282 Vac jet
meter | Std.Methels | | | disthylhydroxyl
maine
disthylamine | | | | | | G.C./p.d.
G.C./p.d. | | Meherreteg
1975 de
192 | pH
foliminations = | grab of spent batch | 1 per batch | 3 batches | Scrubber 124.14.2 | Scrubber 124,14,2
measure velsa e | Std. Mothids | | | If mate | | | | | | Valación
Maria Maria (1975) | | 1.113 | 11 | | | | | | | |
---|-------------------|-------------|-----------------------------------|----------|---------------------------|-------------------|---------------------------|--| | | Variable | Style Type | Minitoring Frequency | Duration | Strallag | Flow Set. | Methoda | | | | | | | | | Lintie | | | | in the first of the second | 1. | Maria Santa | | S asim | 7.00 0 0 0 0 1 A 14 1 | | | | | 61.14.1 | 11tylamines | | l , r cru ning day | | 5 J. How T. 149 . 1 3 . 1 | - war r 114.1 | Star IV thous | | | | orthograph phenol | | | | | Tetor flow | G.C./p.d. | | | | pH . | composite | continuous.
I per drumming day | 3 days | Scrubber 124.14 1 | Schubber 124.14.1 | G.C./p.d. | | | | • | | I per drumming day | - | | meter flow | Std.Mathods
"G.C./p.d. | | ## ATTACHMENT A Continued Fennwalt Corp. - Wyandotte Plant - Monitoring Format for Characterization of Waste water from Mashouts of Processes Discharging to 006 Outfall | :055 | - Variabl e | Sample Type | Monitoring
Frequency | Nashout
Frequency | Curation | Sampling
Location | Flow Est.
Location | Methods | |------------------------------|---|--------------|---|----------------------|----------------------|----------------------|--------------------------|---| | (-y Phanoi) | No discharge dur | ring washout | | | | | | | | Oi t-Monyl Poly-
sulfide) | oH
t-monyl mercapta
t-monyl polysulf | |] per washout | l por year | l event | 2030 Reactor | Measure*
volume | Std.Methods
G.C./p.d.
Unknown | | (Alkylamines) | ,
pH | grab | I each 8 hrs.
during washout | 12-15 per yr. | l_event/
campaign | 21101 Stripper | 21101 Strippe | · Std. Methods | | | pH
Armonia
Alkylamines* | composite | continuous during washout | 12-15 per yr. | 1 event/
campaign | 21101 Stripter | 21101 Strippe
measure | Std. Mathras
Std. Mathras
G.C./p.d. | | | рH | grab | l each 8 hrs.
during washout | 12-15 per yr. | l event/
campaign | 21281 Stripter | 21231 Strippe
measure | · Std.Nethora | | | pH
Armonia
Alkylamines* | composite | continuous during
washout | 12-15 per yr. | l event/
campaign | 21281 Stripter | 21231 Strippe
measure | Std.Methius
Std.Methius
G.C./p.d. | | | | | *The specific alkyla
by the specific ami | | ed for will be | determined | | | | (Vullacs) | No discharge dur | ing washout | | | | | | | | (Diethyl
Thiourea) | pH
Ethylamine
Diethyl Thiornea
Carbon Dischilde
Hydrogen Spillide | | 1 per washout | 1 per 2 yrs. | l event | 2603 Reactor | 2603 Reactor
measure | Std.Methods
G.C./p.d.
G.C./p.d.
G.C./p.d.
Std.Methods | | 1 | V / ita | Gungia Type | Production of the state | : Tust
in the acy | Duruniem — | Str.ling
Logidia | iténtit.
Dan tipa | Minis | |------------------------------|--|-------------|---|----------------------|----------------------|--|---------------------------------|---| | and a first warrant | | r | | TAIR FOR F | 1 and at | 21 12, 2313 | 2012, 2013 | forum etem | | | of a SiberSide
highesine
outylanine
Distryl Thieurea
Ethyl Butyl Thiou
Bydrogen Sulfide | | 8 aum 2012
2 drom 2013
1 drom 2602 | il per your | Uswent | 20/2 Day Trak
surpled unpre-
ately | 2002 m y trok
metorod
• | 7.0./a.d.
7.0./a.d.
6.0./a.d.
6.0./p.d.
6.0./p.d.
6.0./p.d.
8.d.Meths/a | | (Amine Entch) (Distillation) | рĦ | grab | every 8 hrs.
during cleanout | 12 per year | 1 event/
campaign | 3146 Stripper | 3146 Stripper
measure | Std.Methods | | | pH
Arronia
Alkylamines*
Alkanolamines* | composite | continuous during cleanout | 12 per year | 1 event/
campaign | 3146 Stripper | 3146 Stripper
measure | Std.Mathoda
Std.Mathoda
G.C./p.d.
G.C./p.d. | | | | | *The specific alkyla
for will be determi | | | lyzed | | | | (Alkylamines) | pH
Ammonia
51kylamines* | composite | continuous during cleanout | 8 per year | l event/
campaign | 3546 Stripper | 3546 Stripper
measure | Std.Methods
Std.Methods
G.C./p.d. | | | | • | *The specific alkylands by the product being | | zed for will be | determined | | | | (Endothall Acid) | pH
Furan
Endothall Acid
BOD ₅ | composite | 2 grabs per washout | 3 per year | 1 event | 3810 Crystellizer | 3810 Crystal-
lizer
meter | Std.Methods
G.C./p.d.
G.C./p.d.
Std.Methods | | cess | Variable | Sample Type | Monitoring
Frequency | Washout
Frequency | Duration | Sampling
Location | Flow Est.
Location | Methods | |---|---|-------------|--|----------------------|----------------------|----------------------|------------------------------------|---| | (Dibutyl
Telourca) | pH
Dibutyl Thiourea
Carbon Disultide
Butylamine
Hydrogen Sulfide | composite | 2 grabs per washout | 3 per year | 1 evert | 3800 Reactor | 3800 Reactor
meter | Ned.Methods
N.C./p.d.
N.C./p.d.
N.C./p.d.
Ned.Methods | | (Alkanolamines) | pH
Alkylazines*
Alkanolazines*
Ethylene Oxida*
Fropylene Oxida* | composite | continuous during washout | 18 per year | l event/
campaign | 44146 Stripper | 44146 Strippe
measure | r Std.Mathods
1.C./p.d.
1.C./p.d.
1.C./p.d.
1.C./p.d. | | |
| | *The specific alkyla
propylene oxide to
product being run. | | | | | | | (Diethylhydroxyl-
aminė) | pil Triethylamina Triethylamina Triethylamina Oxi Diethylhydramylam Phosphorus - tota | nine | 1 per washout | 1 per year | l event | 4520 Reactor | 4520 Reactor mater | Std.Matheds S.C./p.d. S.C./p.d. S.C./p.d. Std.Matheds | | (Methane Sulfonyl
Chloride and
Mathane Sulfonie
(Acid) | pH
Chlorine
HC1
Hathane Sulfonic
Acid | composite | continuous during washout | 2 per year | . l event | 4624 Acid Strippe | r 4624 Acid
Stripper
measure | Std.Motheds
Std.Motheds
Std.Motheds
D.C./p.d. | | • | nH
Chlorine
HC1
Hothane Sulfonie
Acid | composite . | 2 grabs per washout | 2 per year | 1 event | 46115 Acid Tank | 46115 Acid
tank measure | Std.Methede
Std.Methede
Std.Metheds
Std./p.d. | | 7. 7. 7. 7. 1 | 7 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | Cayla Tyra | tratoria;
Energy | Victorial
Programmy | Eurition | Souritra
Location | Flow Pot.
Ecologia | Process | |---|---|------------|---|------------------------|----------------------|----------------------|--------------------------|---| | Total to the control of | cy
Colorine
Ul | er pluite | 2 jin balipan wesi cubi | Zipan yasn | 1 2005 | ARDS TO HOLER | York beauty | 00000000000000000000000000000000000000 | | Acid) (Conft.) | <pre>M.thane Sulfonic Acid Fethane Sulfonyl Chloride</pre> | , | | | | • | • | G.C./p.d.
G.C./p.d. | | | pH
Chlorine
HCl
Pathane Sulfonic | composite | continuous during washout | 4 per yr. | ,1 event | 4698 Cooler | 4598 Cooler
measure | Std.Mathons
Std.Mathons
Std.Mathons | | | /cid
Mathame Sulfonyl | | • | | | , | | G.C./p.d. | | | Chlorida | | • | | | | | G.C./p.d. | | 7 (Alkanolamines) | pH
Alkylamines*
Alkanolamines*
Ethylene Oxide*
Propylene Oxide* | composite | continuous during washout | 18 per yr. | l event/
campaign | 4765 Stripper | 4765 Stripper
measure | Std.Wethods
G.C./p.d.
G.C./p.d.
G.C./p.d.
G.C./p.d. | | | | | ic alkylamines, alkanol
determined by the prod | | ylene oxide or pr | opylene oxide to be | analyzed | | | ilot Plant | | | | | | | | | | Satch Distillation | pH
Alkylamines*
Alkanolamines* | grab | l per washout | 10 per yr. | l event/
campaign | 4260 Still | 4260 Still
measure | Std.Methods
G.C./p.d.
G.C./p.d. | | | | | | • | | • | | | | | | • | | | • | | | | | - | • | | | | | | | | | • | | • | | • | • | | | | | | | • | • | Variable | Sample Type | Monitoring Frequency | Kashout
Frequency | Duration | Sampling
Location | Flow Est.
Location | Kethods | |-----------------------------|--|---------------------------------------|---|----------------------|----------------------|--|---|---| | ot Plant | | | | | • | | , | | | atch Distillation (Cont't.) | pH
Alkylamines†
Alkanolamines* | composite | continuous during wo shout | 10 per yr. | l event/
campaign | 4270 & 4271
Receivers | 4270 & 4271
Recaivers
maasure | Std.Methods
G.C./p.d.
G.C./p.d. | | | | | c Alkylamines and Alka
determined by the prod | | nalyzed | | | | | ennac NS Ultra | pH
Monoethanolamine
Zinc
N Formylated 4870
4270
Thiethylamine
Carlon Disulfide
Toluene
Pernac N3 Ultra | composite | 1 grab from 4218
1 grab from 42100
2 grabs from 42116
2 grabs from 42106
2 grabs from 42146 | l per yr. | 1 event | 4218 Reactor
42100 Reactor
42116 Receiver
42106 Reactor
42146 Receiver | 4218, 42103,
42116, 42103
42146 massure | G.C./p.d. | | | Pennac N3 Ultra | grab of
Liquid Layer | 1 per washout | 1 per year | 1 event | Rotary Vac.Filter | Rotary Vac.
Filter measu | | | nac NB | Disubylamine
Carbon Disulfide
Formaldebyde
Thiourea
Fichogen Sulfide | grab of
accumulated
wash waters | 1 per washout | 1 per 2 yrs. | l event | 42100 Reactor & 42104 Reactor | | G.C./p.d.
G.C./p.d.
G.C./p.d.
G.C./p.d.
G.C./p.d.
G.C./p.d.
Std.Methods | | • | Te mio Pant A
Pennio Punt 3 | | | | | | | linknow n
Linknow n | | Process | Variable | Sample Type | Monitoring Frequency | Washout
Frequency | Duration | · · | Sampling
Location | Flow Est.
Location | Methods | |---|---|---|--------------------------------|----------------------|-----------|----------|-------------------------------|--|----------------------------| | Pilot Plant (Con't.) | | | • | | | | | | | | · Kexedecyl
Disulfide | pH
Bromine
HBr
Hexadecyl
Mercaptan
Hexadecyl | grab of
accumulated
wash waters | 1 per washout | l per year | 1 event | . :
! | 42100 Reactor & 42106 Reactor | 42100 Reactor
842106 Reactor
measure | | | | Disulfide | | | _ | | | | | Unknown | | | pH
Bromine | composite | continuous during .
Washout | 1 per year . | . 1 event | | 4280 Vac.Jet | 4280 Vac.jet
meter | Std.Methods
Std.Methods | | Anhydrous
Diethylhydroxyl-
amine Distillation | pH
Diethylhydroxyl-
amine | grab of
- accumulated
wash waters | i per washout | 1 per yet | 1 event | | 4247 Receiver | 4247 Receiver
measure | | | wante biggings | Diethylamina | MB3// MBCC/ 2 | | | | | | | G .C./p.d. | NOTE: The term "1 event/campaign" is intended to indicate that one washout for each different product group will be monitored. It is not intended to indicate that each washout will be monitored. ATTACHMENT NO? CAA 4655 BIDDLE AVENUE, WYANDOTTE, MICHIGAN 48182 . (313) 285-9200 rebruary 18, 1981 Mr. Robert J. Courchaine Chief, Water Division Department of Natural Resources Stevens T. Mason Building Box 30028 Lansing, MI 48909 Dear Mr. Courchaine: As part of the requirements of Section C, Process Waste Characterization Study, of Pennwalt's Final Order of Abatement, a detailed procedure used for the characterization of Process 45 - Triethylamine oxide/Diethylhydroyxlamine, is attached. A liquid chromatographic method for the analysis of hexadecyl mercaptan and the corresponding disulfide is nearly complete, with the exception of a few minor details. Since this product is made very infrequently, we are confident that we will have a fully completed method available by the end of the second quarter for the next projected production run. Attempts at development of a method for Methane Sulfonyl Chloride and Methane Sulfonic Acid have not been nearly as successful. To date, we have been unable to obtain consistent results using the same technology that has been so successful for amines and their derivatives. These two compounds are so highly polar and acidic that the gas chromatography-purge and trap system utilized for much of the work during the study has so far been unsuccessful. Liquid chromatography is also complicated by the fact that neither the Methane Sulfonic Acid or the Methane Sulfonyl Chloride is ultra violet active; the use of refractive index detection is both insensitive at the desired levels and unreliable. FEB20 1981 PIE MOUILLEE S.G.A. Mr. Robert J. Courc .ine . Chief, Water Division Department of
Natural Resources ATTACHMENT NO? 2 OF 15 -2- We are currently experimenting with the liquid chromatography of aromatic amine derivatives of Methane Sulfonic Acid and Methane Sulfonyl Chloride, using ion exchange separation techniques, combined with an ultraviolet detector. The results, so far, have been encouraging. We will keep you advised of our progress. Sincerely, PENNWALT CORPORATION . E. Rhodes Manager, Technical Department Paul Zugger David Batchelor Roy Schrameck ### GC .OCEDURE FOR DIETHYLHYDROXYLAM... IN WATER #### SCOPE: To analyze waste water for DEHA and/or its decomposition products to the lppm level. #### **APPARATUS:** A CDS (Chemical Data Systems) model 310 trapping concentrator (fitted with their desorber and standard traps) with necessary hardware to mate to the GC used. GC Perkin Elmer Sigma I system fitted for on column injection using a 1/4" glass column with split disector flow to FID and NPD. Carrier gas used - Helium at 75 psig. ### GC COLUMN Glass 6 feet x 2mm ID Chromosorb 102 with 7% Triton x 305 and 0.5% KOH (80-100 Mesh) Syringe: Hamilton CR 700-200 ## PROCEDURE: The CDS 310 is mated to the Sigma I by a 2" \times 1/8" to 1/16" ss connector. It replaces the GC septum retaining nut, and is connected to the CDS 310 valve assembly discharge with a 1/8" Swagelok tube fitting. Follow the CDS manual for set up of necessary piping of carrier gas and air supply. The CDS system will control the carrier gas. Set up the GC with the 6 ft. glass column specified above so the column will extend all the way through the GC injection port and seat against a septum inside the CDS connecting adaptor. The CDS parameters are as follows: Carrier gas 30ml/min. at 75 psig Desorber flow 40ml/min. Desorber Temperature - 200°C - Heat 5 minutes - Cool 8 minutes *Valve Temperature 200°C (approximately) *CAUTION (refer to the manual on valve operating procedures) Trap temperature - 200°C - 8 minutes ## PROCEDURE (continued) The Sigma I system procedure is Method #2 (see Attachment #1) and is used with a dual detection arrangement using a detector splitter 50/50 to the FID and NPD. The column and trap system must be conditioned with repeated injections of the cleanest water obtainable. Use 2ul of water direct through the CDS "column injection port" until a reproducible scan is obtained. (See Attachment #2). To condition the traps and desorber chamber, inject 10ul of water directly into the desorber chamber and heat for 5 minutes onto trap and cool 8 minutes. (The more water injected the longer the heat and cool cycle will have to be). The trap is then heated for about 6 to 8 minutes at 200°C backflushing onto the column. Repeat runs until a consistent scan similar to Attachment #3 is obtained. A new column may take two or three days to condition. Once a good blank run has been obtained, a sample run is first made using 2ul of sample injected directly to the column. Attachment #4 shows a typical scan of a test solution of 52ppm of a fresh DEHA mix through the CDS trap system. As the sample ages it will change to a combination of the peaks at 6.48, 7.90 and 8.37. If the DEHA is about 20-25ppm or less, it will decompose almost completely with the peak at 6.48 being the only one of measurable amounts. If nothing is detected, or very low response using 2ul, then inject up to 10 to 20ul into the desorber and trap system to concentrate and backflush to column. The method must be calibrated with fresh standards. FO THE ! PPM LEVEL IN ' "STE WATER. ATTAChment #1 COL-- GLASS 6FT 2MM ID CHROMOSORB 102 *(80-100 mesh)* 7% TRITON 305 + 0.5%kOH L2 LST2 ATTACHMENT NO7 METHOD 2 ANALYZER CONTROL INJ TEMP 200 DET ZONE 1.2 250 25 AUX TEMP 25 FLOW A.B 30 5 INIT OVEN TEMP, TIME 75 TEMP RATE TIME 225 12.0 8 DATA PROC STD WT.SMP WT 1.0000 1.0000 1 FACTOR,SCALE 1 0 TIMES 20.40 0.00 11.10 14.50 327.67 327.67 SENS-DET RANGE 200 20 0.00 2 0 0 UNK,AIR 1.000 0.00 TOL 0.0000 0.050 1.0 REF PK 0.000 0.00 0.00 STD NAME 0 EVENT CONTROL ATTH-CHART-DELAY 3 10 0.01 2 FILE HNAL 1 MET CET 6 OF 15 2MM ID GLASS 6FT C102-242-7-0,5KOH PUN 2 pl Blanks - Direct injection NPD - Beach 410 Range / ATEN: Hydregen 9 paig F1D - Aik 30 paig Nydrogen 26 paig SENSITIVITIES 200 20 BGN . This is associated with water 4.30 6.40 7.42 2.41 9.70 12.40 16.35 ATTACHME NI 197 . Attachment # 3 Desorber: Heat Imins @ 2. Cool 28 mins TRAP: Heat 6 mins @, ATTACHMENT NO7 7 QE/5 6.36 В 12.33 13.29 14.31 14.78 END 10 OF. 15 NPO RAYET ATTOW 3 299 SENSITIVITIES 20 Zul of 52 PPM DEHA in Water (3 weeks old) (onect wjectis) BGN 3. 13 6.38 9.70 10.45 11.21 В 12.32 GLASS 6FT 2h... DEHA COLUMN RUN ATTachment #6 ATTACHMENT NO7 A+tachment #7 NPD Range I ATTEN 3 11 DE 15 2 sel (Direct my) of 52 1 pm DEHA (I Day old) 7 GLASS 6FT 1 ID DEHA COLUMN 29 SENSITIVITIES 200 BGN g1.20 3.09 6.34 8.36 9.68 11.17 14.85 A. Lachment #9 ATTACHMENT NO.7 TO DEHA COLUMN GLASS 6FT 2 APD RANGE Z ATTON 3 13.0.5.15 Zul (Direct wjection) 18 PAM DENA (18 Days old) 200 20 **BGN** g0.97 6.35 8.35 9.70 10.37 12.31 END Att ment #10 GLASS 6FT 2M . D DEHA COLUMN PUN NPO Range #1 Atten 3 14 DE 14 DE SENSITIVITIES 299 20 10 ul (injected in Desoeber/Trys) 18 PPM DEHA in Marter (5 Ample 1 Day and) 86N 13 g^{3,86} 7.90 71.21 В 14.85 END ## 1 ## INTEROFFICE COMMUNICATION ## January 14, 1981 TO: Robert Courchaine, Chief, Water Quality Division FROM: Paul Zugger, Chief, Permit Enforcement Branch Environmental Enforcement Division RE: Proposed Final Order of Abatement Pennwalt Corporation Wyandotte, Michigan Based on agreements reached at our meetings on January 5, 1981 and January 9, 1981, I have drafted additional language to be included in the proposed Final Order of Abatement. Attached are additional paragraphs which should be inserted in page two of the proposed Final Order in lieu of paragraphs five through eight of that page of the proposed Final Order of Abatement. As we discussed, I will be presenting this matter to the Water Resources Commission on Thursday, January 15, 1981. With the Commission's concurrence, I suggest that the proposed document be placed on public notice and brought to the Commission for entry at the February meeting. I feel the proposed Final Order represents a good settlement and I am hopeful this matter can be resolved promptly through the entry of this document. PZ:dr cc: Jack Bails Stewart Freeman Frank Baldwin R. Schramec K. JAN 2.1 1001 PTE MUUILLEE S.G.A. - Commission and the Michigan Department of Natural Resources; that the pH limitations contained in the promulgated guidelines for the Inorganic Chemical industry subcategory are not applicable to the Pennwalt facilities. - IT IS FURTHER THE EXPRESS FINDING OF FACT of the Water Resources Commission and the Michigan Department of Natural Resources, that the company continuously measures pH at all its process wastewater discharges. - IT IS FURTHER THE EXPRESS FINDING OF FACT of the Water Resources Commission and the Michigan Department of Natural Resources, that the EPA document entitled BACKGROUND DOCUMENT FOR MODIFICATION OF PH EFFLUENT LIMITATIONS GUIDELINES AND STANDARDS FOR POINT SOURCES REQUIRED BY NPDES PERMIT TO MONITOR CONTINUOUSLY EFFLUENT PH published November 1980 states "pH standards (6.0 9.0) whenever final effluent pH is required to be measured continuously may be beyond the capabilities of BPT and BCT systems." - IT IS FURTHER THE EXPRESS FINDING OF FACT of the Water Resources Commission and the Michigan Department of Natural Resources, that, as evidenced by the company's December 18, 1979, demonstration of their existing pH control facilities, the pH limitations contained in this Final Order are appropriate. - IT IS FURTHER THE EXPRESS FINDING OF FACT of the Water Resources Commission and the Michigan Department of Natural Resources, that compliance with the pH limitations contained in this Final Order will insure full protection of the state's water quality standards and will protect the state's waters against pollution, impairment, or destruction. - IT IS AGREED BY ALL PARTIES, the Department of Natural Resources, the Water Resources Commission, and Pennwalt Corporation that in the absence of effective guidelines for pH, it is the judgement of the parties that the pH control facilities installed by the company constitute Best Practicable Control Technology Currently Available (B.P.C.T.C.A.). The parties also recognize that the United States Environmental Protection Agency (EPA) has neither made a final determination on this issue nor authorized the inclusion of the pH limitations contained herein in a revised NPDES permit for Pennwalt, and that a final determination by EPA on this issue may require modification of this Final Order or NPDES permit. In this event, either party may seek such modification. - IT IS FURTHER THE EXPRESS FINDING OF FACT of the Water Resources Commission and the Michigan Department of Natural Resources that the Company has reviewed this Consent Order and while neither admitting nor denying that litigation of the issues would have resulted in a finding of the violations referred to in this Order or award of the damages set forth in this Order, has agreed to its entry as a Final Order of the Water Resources Commission. INSPECTION FACIL... REGION DISTR. PERMIT RATING FACILITY 104 PENNWALT CORPORATION MI0002381 UNRELIAS 1 820298 EAST PLANT LAST VISIT 4655 BIDDLE AVE. TYPE DESCRIPTION DATE RE WYANDCTTE 01 / 78 MI 48192 ENFORCEMENT 1 OPERATOR - NUMBER VISIT REASONS CERTIFIED C2/7 A - REGULAR SCHEDULE E - FACILITY REQUEST MACIAG DARRELL L W001261 B - EFFLUENT FAILURE F - PUBLIC COMPLAINT CURRENT VISIT C - COMPLIANCE FAILURE G - INFORMATION CHANGES REASON FOLLOW-UP DATE NO. OF VIS DATE D - REGION REQUEST H - OTHER لملجل FACILITY NOT CLASSIFIED FACILITY CLASSIFICATION: Alb, A2f, B1b Contact: Bob Heineman, Jack Lewis Rating for this facility scaletions 820190 002 DISCHARGE TO DETROIT RIVER 820409 OGO INTAKE 821044 O49 DEEP DISPOSAL WELL 4 821045 O47 DEEP DISPOSAL WELL 15
821046 648 DEEP DISPOSAL WELL 6 821088 006 DISCHARGE TO MONGUAGON CREEK The report on the survey conducted on July 7-8, 1980 was delivered to Mr. Heineman and discussed. Mr. Heineman feels that the reason the company's results were higher than the survey crew's at the intake was that the company's sampling tube was direy. He said it would be cleaned as soon as possible. The production facilities, wastewater treatment and monitoring stations, storage areas and the outfalls were toured at both the East and West Plants. At the time of my inspection, a outfalls were within permit limits. Outfall 001 or Wye Street sewer receives noncontact cooling water from the chlorine plant (chillers and compressors). There is no treatment at this outfall. The effluent was clear and oil free. Outfall 002 receives process waste from the chlorine cell room. Treatment consists of pH adjustment (CO₂, H₂SO₄ or lime addition) and agitation. The effluent was clear and containe no visible oil. Outfall 003 receives process waste from the ferrous chloride and anhydrous ferric chloride ANY CHANGES REQUIRED IN WISER FILE MICHIGA: DEPARTMENT OF NATURAL **:**SOURCES PTE. MUULLEE S.G.A. #### INTEROFFICE COMMUNICATION Janaury 13, 1981 TO: Roy Schrameck FROM: Karl Zollner, Jr. X SUBJECT: Pennwalt Corporation The intent of the following memorandum is to provide a file documentation of the notes I took Friday, January 9, 1981, meeting regarding the Pennwalt Corporation. You and I were both in attendance at that meeting. Also in attendance were Mr. Zugger, Mr. Batchelor and Ms. Harris of the Environmental Enforcement Division and Mr. Courchaine, Mr. Baldwin, Mr. Ross, Ms. Dixon and Mr. Bek of the Water Quality Division Since the last meeting staff had regarding this matter, it has been determined that there are promulgated BPT guidelines for pH for this particular industrial category. You argued that those guidelines for pH limits (6.0-9.0) were limits for analyses of grab samples, not continuous monitoring samples. This was the whole purpose of EPA coming up with those new limits for continuous pH monitoring situations. You indicated that multi-stage feed neutralization and a diversion system is what EPA has determined is BPT. The Company has installed a multistage feed neutralization system, but does not have room, because of physical constraints, for a diversion system for all of their outfalls. You indicated you would evaluate the Company's past pH data to attempt to show that our proposed pH range limits would be more restritive on the Pennwalt Corporation than EPA's proposed limits for continuous pH monitoring would be. It was indicated that we should state clearly in the Order that in our judgment, that the pH treatment technology installed by the Company is the equivalent of BPT. There was much discussion as to whether we should only issue the Order at this time or should issue both the Order and a reissued NPDES permit. If we do not reissue the permit, the current permit will remain in full force and effect except that compliance with certain sections of the Order should be indicated to also constitute compliance with corresponding sections of the permit. The consensus seemed to be that the permit should not be reissued until after EPA promulgates their final guidelines for pH where pH is continuously monitored. There was also considerable discussion as to whether or not to take this issue to the Water Resources Commission at this month's meeting. It was decided that a briefing will be made to the Commission on the uniqueness of the pH limits in the proposed Order and asking them to approve the public noticing of the Order. After you complete your review of the pH treatment technology, we are to inform the Company that the permit remains in effect since we have an application on hand for permit reissuance. That letter should probably point out to the Company what the proposed EPA pH limits will require. clp cc: P. Zugger R. Courchaine/F. Baldwin/WQD Files 100 361 Moloco, 361 BIDOLE AVENUE. WYANDOTTE, MICHIGAN 48192 · (313) 285-9200 COMPREHE STATE STATE January 9, 1981 State of Michigan Department of Natural Resources Data Center Box 30028 Lansing, Michigan 48909 Re: Pennwalt Wyandotte Plant NPDES Permit No. MI 0002381 Final Order of Abatement No. F.O. 1931 #### Gentlemen: The Monthly Operating Report for the month of December 1980 is enclosed. Please note the following incidents of apparent non-compliance. ### Outfall #820190 (002) Permit limitation for py - 6.5 minimum, 9.5 maximum. | | | Raw Basis | Adjusted Basis | |--------------------------|-------|-----------|----------------| | Continuous monitoring on | 12/1 | 6.0 | No excursion | | | 12/2 | 2.6 | | | | 12/8 | 9.8 | No excursion | | | 12/9 | 6.0-10.0 | No excursion | | | 12/10 | 5.9 | No excursion | | | 12/12 | 6.2-10.0 | No excursion | | | 12/15 | 2.5 | No excursion | | | 12/16 | 1.9-10.0 | No excursion | | | 12/17 | 6.2-12.1 | No excursion | | | 12/20 | 3.9 | No excursion | | | 12/23 | 5.9 | No excursion | | | 12/26 | 6.4 | No excursion | | | 12/27 | 6.1 | No excursion | | | 12/29 | 6.3 | No excursion | | | 12/30 | 5.5-10.3 | No excursion | The adjusted basis allows 5% of a 24 hour period for short duration pH spikes. The outfall was in pH compliance 99.3% of December. RECEIVED JAN 1 3 1991 WUC COMPLIANCE - 1 - xci B. Schranich (faul Zugger FTE. MULILLEE S.G.A of Michigan y 9, 1981 RECEIVED **超过10 66**0 SERVICE OF CHILD #### Outfall #820223 (005) Permit limitation for pH - 6.5 minimum, 9.5 maximum. | | Raw Basis | Adjusted Basis | |--------------------------------|-----------|----------------| | Continuous monitoring on 12/10 | 11.7 | No excursion | | 12/11 | 2,6 | No excursion | The adjusted basis allows 5% of a 24 hour period for short duration pH spikes. Both of these incidents appear related to a period of repair to the reagent supply system. The outfall was in compliance 99.9% of December. 110/1 We again submit analytical data for iron concentration in the east plant pond inlet and outlet. | | | ug/ I | | |--------|--------------|-------|---------------| | Date | <u>Inlet</u> | * | <u>Outlet</u> | | 12/1 | 4670 | | 3 80 | | 12/2 | 6874 | | 820 | | 12/3 | 5740 | | 3 50 | | 12/4 | 4820 | | 420 | | 12/5 | 5380 | | 3 30 | | 12/8 | 7580 | | 3 60 | | 12/9 | . 4150 | | . 370 | | 12/10. | 1420 | | 180 | | 12/11 | 3000 | | 470 | | 12/12 | 3 340 | | 30 0 | | 12/14 | 23 50 | | 140 | | 12/15 | 31 80 | | 33 | | 12/16 | 3490 | | 300 | | 12/18 | 370 0 | | 27 0 | | 12/19 | 3 350 | | 21 0 | | 12/21 | 343 0 | | 370 | | 12/22 | 4540 | • | 3 50 | | 12/23 | 3940 | | 460 | | 12/26 | 3310 | | 2 90 | | 12/28 | 4560 | | 300 | | 12/29 | 3100 | | 200 | | 12/31 | 3 830 | | 2 90 | | | | | | ### Outfall #821381 (006) Permit limitation for pH - 6.5 minimum, 9.5 maximum. | | Raw Basis | Adjusted Basis | |--------------------------------|-----------|----------------| | Continuous monitoring on 12/17 | 5.9 | | | 1.2/25 | 6.4 | No.excursion | Adjusted basis allows 5% of a 24 hour period for short duration pH spikes. Both incidents are believed related to control system maintenance. State of Michigan January 9, 1981 Page 4 RECEIVEL JAN 15 Min COMPRESE NAME AND STREET Outfall # 821381 (006) (Cont'd.) Permit limitation for pH - 6.5 minimum, 9.5 maximum. (Cont'd.) The outfall was in compliance 99.6% of December. Permit limitation for NH₃-N - 3.0 mg/l or 250 lbs/day maximum. Grab sample on 12/5 4.10 mg/1 - 266 lbs/day 12/8 9.40 mg/1 - 634 lbs/day These apparent excursions may have resulted from operating difficulties in Process 44. Permit limitation for BOD₅ - 576 lbs/day maximum. Composite samples on 12/2 647 lbs/day The DNR and Pennwalt are currently negotiating new limits for this parameter. Very truly yours, PENNWALT CORPORATION John J. Lewis Supervisor, Environmental Affairs oin & Lewis Wyandotte Plant JJL:em ## MICHIGAN DEPARTMENT OF NATURAL RESOURCES #### INTEROFFICE COMMUNICATION 112 mount = 8.0.A JAMOD 1131 January 7, 1981 TO: Roy Schrameck Lice Jense FROM: Karl Zollner, Jr. X13 SUBJECT: Pennwalt Corporation, Wyandotte On January 5, 1981 I attended a meeting in Mr. Courchaine's office to discuss staff's future actions regarding the Pennwalt Corporation. In addition to Mr. Courchaine, those in attendance included Paul Zugger, David Bachelor, Valerie Harris of the Environmental Enforcement Division and Frank Baldwin and myself of the Water Quality Division. The following are a copy of the brief notes I took at that meeting to provide you information as to what took place. We are now at a point where the Department and the Attorney General's Office are near reaching a settlement with the Pennwalt Corporation. It is anticipated that our proposed Order will be objected to by the U.S. EPA because of the proposed pH limits. More specifically, it is anticipated that EPA will object to the percentage of time that our Order would allow a pH outside of the pH range specified in the Order and in a revised NPDES permit. Paul Zugger feltwe should proceed with the issuance of the Order over the objections of the U.S. EPA. Frank Baldwin recommended that we public notice both the Order and a proposed NPDES permit for reissuance at the same time. It was decided that these would be discussed before the Water Resources Commission at this month's meeting. Frank suggested they both (the Order and permit) be public noticed this week. Paul disagreed feeling they should not be public noticed until after we make our presentation to the Water Resources Commission. It was decided that you or a member of your staff should prepare a summary and make the technical presentation to the Water Resources Commission as to the reasons we feel the Company has installed BPT regarding pH control. Your summary should also describe the percentages of time that the pH would be allowed outside of set limits and why these are
appropriate. We will send a copy of both the proposed Order and permit to the U.S. EPA detailing our reasons why we feel the Company has provided BPT for pH control and why our proposed pH limits are reasonable. In the letter of transmittal we will inform them that we are willing to discuss this matter with them. If they continue to object to the issuance because of the proposed pH limits, we will proceed with the issuance of the Order because this is a State document but will not reissue the NPDES permit over their objection. EPA could then issue that specific permit with their desired pH limits. It is anticipated that the Pennwalt Corporation would then adjudicate that permit with the U.S. EPA, indicating that they have installed BPT. Roy Schrameck January 7, 1981 Page 2 There was also considerable discussion on the proposed additional penalties that are to be imposed on the Pennwalt Corporation. There apparently has been some disagreement among the staff but this has been resolved. The Company paid a \$150,000 penalty at the time the original Order was issued. Since that time they have paid additional penalties of approximately \$180,000. A calculated amount of additional penalty from the date of issuance of the original Final Order to the date that the Company installed new treatment technology has been determined to be \$211,000. It is proposed to give them credit for the additional \$180,000 that they have already paid leaving a balance of an additional \$31,000 yet to be paid according to the proposed settlement. It is anticipated that EPA may also object to our proposed additional penalty. KZ/vls cc: Robert J. Courchaine/Frank Baldwin Paul Zugger # ■PENNWALT CORPORATION, EAST PLANT Wyandotte, Michigan MI 0002381 The Pennwalt Corporation (East Plant) is engaged in the production of industrial inorganic chemicals namely calcium hypochlorite, chlorine, caustic, hydrochloric acid, and ferric chloride. Production figures have been requested to be held in confidence. Adescription of the various outfalls is as follows: - -DO1 Cooling water from calcium hypochlorite plant and of noncontact cooling from chlorine liquification plant. Total 9.6 MGD (revised application) - Contact barometric condenser water and noncontact cooling water from sodium hydroxide evaporation department and contact cooling from chlorine rell. Total 19.3 MGD - Moncontact cooling from chlorine cell, HCI, ferric chloride, and anhydrous caustic departments, 7.5 MGD - = 3 anhydrous and ammonia units have been discontinued, no discharge from 004. - → Process wastes from calcium hypochloride, sodium hydroxide evaporation, fitting and shipping, anhydrous sodium hydroxide, and sodium silicate cand brine purification departments. (1.6 MGD) ## Initial Effluent - -- Staff monitoring results for suspended solids averaging 19 mg/l with 30 maximum sused 24 average, 35 maximum to allow for minimum-average variation. Flow avalue of 9.6 mgd maximum from company's monthly operating reports and revised application. - ■02 Staff monitoring for total suspended solids using a maximum of 48 mg/l ≤50 mg/l. Flow value of 19.3 mgd maximum from revised application. - District staff recommendation that 50 mg/l total suspended solids maximum can be met. Flow of 7.5 mgd maximum from application. Total copper value sused on a maximum based upon average of 0.117 mg/l average in application. Interest in application. - **⇒D04** Discontinued. - ■905 Total suspended solids based upon revision of waste survey, operating reports, and staff samples. Flow from maximum given in application. Ammonia limits set based upon flow through bio-assey. #### Final Limitations Suidelines for the inorganic chemicals industry became effective May 14, 1974. Subpart F apply to the Chlorine and caustic production facilities and subpart G for the hydrochloric acid production. No guidelines are specified for the other production facilities. Subpart F - Chlorine and sodium hydroxide Parameter Average Maximum Total Suspended Solids Lead 0.32 lbs/1000 lbs 0.0025 lbs/1000 lbs 0.64 lbs/1000 lbs 0.005 lbs/1000 lbs pH range 6.0 - 9.0 Subpart G - Hydrochloric Acid BPCTCA requires no discharge of pollutants Due to the fact that wastes from the various production facilities are directed to one treatment system it is difficult to apply the specific guidelines to a particular process. Therefore, the most uniform guideline numbers were used and applied across the board based upon concentration values. The resultant load limitations were checked to insure that the guidelines limits for specific catagories were not exceeded. - Outfall 001 Limits placed on waste water prior to mixing with noncontact cooling water - Outfall 002 Limits placed upon contact barometric condenser water prior to mixing with noncontact cooling water. - Outfall 003 Limits placed upon direct contact cooling water prior to mixing with noncontact cooling water. Anhydrous ammonia units # 1 and 2 have been shut down. Total suspended solids loading of 230 lbs/day average and 460 lbs/day maximum based upon concentration limit of 25 and 50 mg/l using flows of 0.2 mgd contact cooling from anhydrous caustic and sodium silicate flaking and cooling unit and 0.4 mgd contact cooling water from the ammonia chloride and agua HCL unit. - *Outfall 005 Limitations established based upon 25 mg/l average and 50 mg/l maximum for total suspended solids. #### U.S. ENVIRONMENTAL PROTECTION AGENCY EASTERN DISTRICT OFFICE FIELD SAMPLING SURVEY PROPOSAL FACILITY NAME Pennwilt Corp SURVEY DATE 11/ 3/ 80 LOCATION_ RIVERUIEW NPDES NO. _M1 000 2 381 SURVEY NO. DISTRICT LAB FIELD CENTRAL REGIONAL LAB . TEMP. D.O. COND. CHLORINE Sample Sample Sample Point Number | Point Description SIELOZ Preservative Code 07 (08) Noton SS 501 /טט 002 Amis 8 Big #3 Soz 503 003 Almes & BIO #2 1005 504 505 Aimes & Bio B 006 SOG INF In fleat To pond 41 22 507 150 8 11/1 # 509 0 510 "Pond# 4 Menguagen Greek sludie 511 # 100 workers laid off at Pennwalt The permanent shutdown of the dry caustic and detergent departments and the layoff of about 60 workers at Pennwalt Corp.'s Wyandotte Plant was announced last week. The shutdown will take effect April 1. The announcement comes on the heels of the additional layoffs of about 40 workers at the Wyandotte facility, which have taken place in recent weeks. The dry caustic and detergent departments are part of the operations at the east plant, located at the southern border of Wyandotte. Pennwalt also operates a west plant across Pennsylvania Avenue in Riverview. The 40 previous layoffs affected years. workers in various depa nents Acco in both the east and west works, according to a company spokesman. In a written statement announcing the shutdown, Pennwalt stated "the growth of substitute products and the increased cost of manufacturing and shipping the products has led to a non-competitive situation" for dry caustic and detergents. "We are experiencing a decrease in demand," said Plant Manager Edward Golinski. "What we're trying to do is make the future as secure as possible for the plant," he explained. He said the dry caustic and detergent operations had not been competitive for a number of years. According to Golinski, the 40 previous layoffs and the departments' shutdown are aimed at improving plant productivity. In March, 1979 Pennwalt stopped production of perchlorate, a swimming pool chemical, resulting in the layoff of about 140 workers. After the April 1 shutdown, Pennwalt's Wyandotte Plant will employ about 640 people, said Golinski. Norbert Springer, president of United Steel Workers Local 1200 representing workers at the east plant, said even after the shutdown the east works will employ more workers than any other chemical division in the Pennwalt conglomerate. Springer said the shutdown will also have an effect on the plant's skilled trades group and maintenance personnel, who will no longer have to service the closed departments. The union is meeting with plant management today to negotiate for the employees affected by the closing, said Springer. ## STATE OF MICHIGAN DEPARTMENT OF NATURAL RESOUR LS WATER RESOURCES COMMISSION IN THE MATTER OF NPDES PERMIT NO. MI 0002381 Pennwalt Corporation East Plant FINAL ORDER NO. 1931 WRC No.: NC-9-79-14-3215 #### NOTICE OF NONCOMPLIANCE AND ORDER TO COMPLY TO: Pennwalt Corporation 4665 Biddle Avenue Wyandotte, Michigan 48192 Attention: Mr. John J. Lewis, Supervisor, Environmental Control PLEASE BE ADVISED that we have sufficient information to believe that your facility has failed to comply with the terms and conditions of your National Pollutant Discharge Elimination System Permit issued on June 20, 1975, and your Final Order of Abatement adopted against your Company on October 10, 1977. PURSUANT to the terms of the aforementioned Order (Part I, Sections A.6, A.7, A.8, A.9, A.10), any discharge from your facility is limited to the following: | | | Di | scharge Limit | ations | | |--------------------|--------------------|-----------------------|---------------|------------------|-------------| | | | lbs/da | ıy | mg/l | | | Effluent | Outfall | Daily | Daily | Daily | Daily | | Characteristics | No. | Average | Maximum | Average | Maximum | | Chloride Net #/Day | 000* | | 500,000 | - | - | | Total Lead | 002 | 1.37 | 2.75 | - | - | | Suspended Solids | 002 | 1,856 | 3,711 | | - | | Total Iron | 003 | _ | - | . | 1.6 | | Total Lead | 003 | 1.0 | 2.0 | - | - | | Suspended Solids | 003 | 844 | 1,689 | - | - | | BODs | 006 | 380 | 570 | - | - | | Ammonia Nitrogen | 006 | _ | - | 1.5 | 3.0 | | рН | 002,003
005,006 | The pH sh
than 9.5 | all not be le | ess than 6.5 nor | greater | The monthly monitoring report submitted for the month of July 1979 shows that your facility exceeded its authorized discharge limits according to the following: | Date of
Excursion
7-15-79 | Outfall
No.
000* | Effluent Characteristics Chloride-Net #/Day | Reproted Value 527,092 lbs/day
| |---|---|--|--| | July 1979 | 002 | Total Lead | 1.5 lbs/day | | 7-10-79 7-11-79 7-12-79 7-23-79 7-25-79 7-26-79 7-30-79 | 002
002
002
002
002
002
002 | Suspended Solids | 4,050 lbs/day *6,291 lbs/day 4,408 lbs/day 4,050 lbs/day 4,623 lbs/day 7,247 lbs/day 4,998 lbs/day | | 7-3-79
7-9-79
7-9-79
7-10-79
7-10-79
7-11-79 | 002
002
002
002
002
002 | рн
рн
рн
рн
рн | 3.3 S.U.
9.6 S.U.
5.1 S.U.
11.1 S.U.
2.9 S.U.
10.1 S.U. | Date of Excursion 7-28-79 Outfall No. Effluent Characteristics Reported Value 10.6 S.U. 000* Total Chlorine loading 001, 002, 003 and 005 *July 1979 Monthly Operating Report shows 6,291 lbs/day of Suspended Solids at outfall 002 on July 11, 1979. However, the noncompliance notification submitted by the permittee shows 6,294 lbs/day of suspended solids at outfall 002 on July 11, 1979. Permittee is therefore required to confirm in writing which of the above data is correct for suspended solids at outfall 002 on July 11, 1979. PURSUANT to the terms of the aforementioned permit (Part II, Section A.1): "All discharges authorized herein shall be consistent with the terms and conditions of this permit. The discharge of any pollutant identified in this permit more frequently than or at a level in excess of that authorized shall constitute a violation of the permit". BE ADVISED that the excursions cited in this Notice of Noncompliance are a violation of your NPDES Permit No. MI 0002381. PURSUANT to a letter dated August 10, 1979, the Pennwalt Corporation offered a written explanation for the effluent excursions cited in this Notice of Noncompliance. In that letter, the permittee attributed the excursion of chloride net pounds per day that occurred on July 15, 1979, to "temporary diversion of clariflocculator bottoms to the active pond". BE ADVISED that the latter incident is a violation of Part II, Section A.7 that prohibits any diversions or bypass of facilities necessary to maintain compliance with the terms and conditions of your NPDES permit. BE ADVISED that despite efforts by the Company toward resolution of these effluent problems and other matters, the violations continue. Pennwalt Corporation is hereby put on Notice that enforcement actions may be escalated if effluent violations persist. WATER RESOURCES COMMISSION MICHIGAN DEPARTMENT OF NATURAL RESOURCES Date Issued: September 21, 1979 Robert J. Courchaine Executive Secretary by: Robert F. Babcock, Chief NPDES Effluent Compliance Unit ADDRESS FOR FURTHER CORRESPONDENCE Robert F. Babcock, Water Quality Administrator Michigan Water Resources Commission Water Quality Division/NPDES Compliance Section P.O. Box 30028 Lansing, Michigan 48909 Telephone: (517) 373-1947 STATE OF MICHIGAN tip ficinits file CPI WILLIAM G. MILLIKEN, Governor **DEPARTMENT OF NATURAL RESOURCES** STEVENS T. MASON BUILDING, BOX 30028, LANSING, MICHIGAN 48909 HOWARD A. TANNER, Director October 31, 1977 Jedenson K. Holyk H. J. Withers Plant Manager Pennwalt Corp. 4655 Biddle Ave. Wyandotte, MI 48192 ATURAL RESOURCES COMMISSION CARL T. JOHNSON E. M. LAITALA DEAN PRIOGEON HILARY F. SNELL HARRY H. WHITELEY JOAN L. WOLFE CHARLES G YOUNGLOVE Re: NPDES Permit No. MI 0002381 Final Order of Abatement No. FO 1981 Dear Mr. Withers: On October 20, 1977, Final Order of Abatement Number F.O. 1981 for Pennwalt Corporation, Wyandotte, Michigan was entered by the Water Resources Commission and the Director of the Department of Natural Resources. Attached is a copy of the executed document. Very truly yours, WATER QUALITY DIVISION Paul D. Zugger Permit & Enforcement Coordinator PDZ:sh cc: S. Freeman J. Bails G. Reath H.G. Sparrow, III C. W. Gullickson R. Courchaine W. Denniston J. Bohunsky MICHIGANY R1026 10/78 #### STATE OF MICHIGAN #### DEPARTMENT OF NATURAL RESOURCES #### WATER RESOURCES COMMISSION In the matter of abatement of water pollution: Pennwalt Corp., Wyandotte, Michigan NPDES Permit No. MI 0002381 Final Order No. FO 1931 #### FINAL ORDER OF ABATEMENT - At a session of the Water Resources Commission, on August 19, 1977, at Marquette , Michigan, upon presentation by staff of the Water Quality Division, Department of Natural Resources, and based upon the official files of the Water Resources Commission: - IT IS THE EXPRESS FINDING OF FACT of the Water Resources Commission that Pennwalt Corporation hereinafter referred to as the Company, was issued NPDES Permit No. MI 0002381 on June 20, 1975 for its Wyandotte facility in Wyandotte, Michigan, which was revised by a further permit issued March 3, 1976, which said permit of March 3, 1976 was itself revised on May 21, 1976. - IT IS FURTHER THE EXPRESS FINDING OF FACT of the Water Resources Commission that the Company has violated, and is violating, the expressed terms and conditions of NPDES Permit No. MI 0002381 by its continued inability fully to comply with the schedule of compliance as set forth in Part I, Section C on pages 17 and 18 of said permit, although it has complied with substantial portions of the said schedule of compliance. - IT IS FURTHER THE EXPRESS FINDING OF FACT of the Water Resources Commission that the Company has violated, is violating, and may violate certain of the final effluent limitations contained in NPDES Permit I'm. MI 0002381. - IT IS FURTHER THE EXPRESS FINDING OF FACT of the Water Resources Commission that on March 18, 1977 the Company stated some of the final effluent limitations found in NPDES Permit No. MI 0002381 could not be met on or before July 1, 1977. - IT IS FURTHER THE EXPRESS FINDING OF FACT of the Water Resources Commission that as a result of deliberations between staffs of the Company, the Attorney General's Office and the Department of Natural Resources an amicable resolution of all issues has been reached. - IT IS FURTHER THE EXPRESS FINDING OF FACT of the Water Resources Commission that the Company has reviewed this Consent Order and while neither admitting nor denying that litigation of the issues would have resulted in a finding of the violations referred to in this Order or award of the damages set forth in this Order, has agreed to its entry as a Final Order of the Water Resources Commission. - IT IS FURTHER ORDERED that NPDES Permit No. MI 0002381, issued on June 20, 1975, as subsequently revised, is in full force and effect except as modified by this Final Order. - IT IS FURTHER ORDERED that the Company will control and monitor their wastewater from the date of issuance of this Final Order until the specified dates to obtain final effluent requirements in accordance with the limitations specified below: est Permit No. 0002381 Final Order No. FO 1931 Page Two #### 1. Initial Effluent Limitations During the period beginning upon the issuance of this permit, and lasting until September 30, 1977, the permittee is authorized to discharge from outfall 002. Such discharge shall be limited and monitored by the permittee as specified below: | | Discharge Limitat
kg/day (lbs/day) Other | tions
Limitations | Monitoring Requ | uirements : | |---------------------------------|---|----------------------|--------------------------|----------------------| | Effluent
Characteristic | Daily Daily Dail
Average Maximum Avera | y Laily | Measurement
Frequency | Sample
Type | | Flow, M ³ /Day (MGD) |) | • | 3 x weekly | , / | | Total Suspended
Solids | 3660 Net*
(8050)Net* | 50 mg/l
Net* | 3 x weekly | Grab | | Total Chlorine
Residual | | 50 mg/l | 3 x weekly | Grab | | Chlorides | | • | 3 x weekly | Grab | | Ammonia (as N) | | | Weekly | Grab | | Oil and Grease | No Vi | sible Film | Daily | Visual
Observatic | | Temperature | | | 3 x weekly | Grab | | Total Lead | | | Twice Monthly | Grab | | COD | | | Weekly | Grab | - a. The pH shall not be less than 6.5 nor greater than 11.0. The pH shall be monitored as follows: three times weekly; grab. - b. The discharge shall not cause excessive foam in the receiving waters. The discharge shall be essentially free of floating and settleable solids. - c. The discharge shall not contain oil or other substances in amounts sufficient to create a visible film or sheen on the receiving waters. - d. Samples taken in compliance with the monitoring requirements above shall be taken prior to discharge to the Detroit River. ^{*} Net is defined as the difference between intake and discharge values. Permit No. MT.0002381 Final Orde 0. FO 1931 Page Three #### 2. Initial Effluent Limitations During the period beginning upon the issuance of this permit and lasting until March 31, 1978, the permittee is authorized to discharge from outfall 003. Such discharge shall be limited and monitored by the permittee as specified below: | | | Limitations | | | |----------------------------|---------------------------------|-------------------------------|------------------------|----------------------| | Effluent | kg/day (lbs/day)
Daily Daily | Other Limitations Daily Daily | Monitoring Requirement | uirements
Sample | | Characteristic | Average Maximum | Average Maximum | Frequency | Type | | Flow, M3/Day (MG | D) | | 3 x weekly | | | Total Suspended Solids | | | 3 x weekly | Grab | | Ammonia (as N) | | | Weekly | Grab | | Chlorides | | | 3 x weekly | Grab | | Total Copper | 8.6(19) | 0.3 mg/l | Twice Monthly | Grab | | Total Iron | 483 (1063) | 17 mg/1 | Twice Monthly | Grab | | Total Lead | 14 (31) | 0.5 mg/1 | Twice Monthly | Grab | | Total Chlorine
Residual | | 35 mg/l | 3 x weekly | Grab | | Oil and Grease | | No Visible Film | Daily | Visual
Observatio | | Temperature | | | 3 x weekly |
Reading | - a. The pH shall not be less than 5.0 nor greater than 11.0 . The pH shall be monitored as follows: three times weekly; grab . - b. The discharge shall not cause excessive foam in the receiving waters. The discharge shall be essentially free of floating and settleable solids. - c. The discharge shall not contain oil or other substances in amounts sufficient to create a visible film or sheen on the receiving waters. - d. Samples taken in compliance with the monitoring requirements above shall be taken at outfall 003 prior to discharge to the Detroit River. Permit No. 1 0002381 Final Order No. FO 1931 Page Four #### 3. Initial Effluent Limitations - Treated Process Wastes During the period beginning upon the issuance of this permit and lasting until March 31, 1978, the permittee is authorized to discharge treated process wastes from outfall 005. Such discharge shall be limited and monitored by the permittee as specified below: | | Discharge L
kg/day (lbs/day) | imitations Other Lim | | Monitoring Req | ui: remente | |----------------------------------|--|----------------------|------------------|-----------------------|---------------------| | Effluent
Characteristic | kg/day (lbs/day)
Daily Daily
Average Maximum | Daily
Average | Daily
Maximum | Measurement Frequency | Sample
Type | | - Flow, M ³ /Day (MGD |)) | | | Weekly | | | Total Suspended
Solids | 600 Net* 900 Net*
(1334)Net*(2000)Net* | | 150 mg/1
Net* | 3 x weekly | Grab | | COD | 18 196
(4 0032) | • | 3000 mg/l | Weekly | Grab | | Ammonia (as N) | | 1.0 mg/l | 1.5 mg/l | Weekly | Grab | | Total Chlorine
Residual | · | | | 3 x Weekly | Grab | | Chlorides | | | | 3 x weekly | Grab | | Te mperature | | | | 3 x weekly | Reading | | Oil and Grease | | No Visit | ble Film | Daily | Visual
Observati | - a. The pH shall not be less than 6.5 nor greater than 12.5. The pH shall be monitored as follows: three times weekly; grab. - b. The discharge shall not cause excessive foam in the receiving waters. The discharge shall be essentially free of floating and settleable solids. - c. The discharge shall not contain oil or other substances in amounts sufficient to create a visible film or sheen on the receiving waters. - d. Samples taken in compliance with the monitoring requirements above shall be taken prior to mixing with effluent from the Wyandotte-Wayne County Wastewater Treatment Plant. ^{*} Net is defined as the difference between intake and discharge values. Permit No. h. J002381 Final Order No. FO 1931 Page Five #### 4. Initial Effluent limitations - Total Chloride Loading During the period beginning upon the issuance of this permit and lasting until March 31, 1978, the permittee is authorized to discharge from outfalls 001, 002, 003, and 005. Such discharge shall be limited and monitored by the permittee as specified below: | | Discharge Limitations | Monitoring Requirements | | | |----------------------------|-----------------------------------|--------------------------|-----------------|--| | Effluent
Characteristic | kg/day (lbs/day)
Daily Maximum | Measurement
Frequency | Sample
_Type | | | Total Combined outfa | alls 001, 002, 003 & 005 | | | | | Chlorides | 227,000 (500,000)
Net* Net* | 3 x weekly | Calculat | | de ^{*} Net is defined as the difference between intake and discharge values. Permit No. M. U002381 Final Order No. FO 1931 Page Six #### 5. Initial Effluent Limitations During the period beginning on the effective date of this permit and lasting until January 31, 1978, the permittee is authorized to discharge from outfall 006. Such discharge shall be limited and monitored by the permittee as specified below: | Effluent
Characteristic | Daily | Discharge
lbs/day)
Daily
Maximum | Limitation
Other Lim
Daily
Average | | Monitoring
Measuremen
Frequency | it | rements
Sample
Type | |---------------------------------|--------|---|---|---------|---------------------------------------|--------|---------------------------| | Flow, M ³ /Day (MGD) | | | | • | 3 x weekly | , | • | | B0D5 | | | | | Weekly | 24 hr | composite | | COD | 2634 | 11183 | | | 3 x weekly | 24 hr | composite | | Total Suspended | (5806) | (24603)
1118 Ne | | 50 mg/1 | 3 x weekly | gr | ~ab | | Solids
Chlorides | | 4000 Ne | (2460)Net*
4000 Net* | . Net* | 3 x weekly | 24 hr | composite | | Pheno1 | | (8800)Net | C* | | 3 x weekly | 24 hr | composite | | Ammonia (as N) | | • | | | 3 x weekly | gr | `ab | | Total Chlorine
Residual | | | | | 3 x weekly | gr | ab | | Oil and Grease | | | No Visibl | e Film | Daily | Visual | Observat | | Total Zinc | | | | | Twice Mont | hly 24 | hr comp. | | Te mperature | | | | | Weekly | Readin | g | | Sulfide | | | | | Twice Mont | hly 24 | hr comp. | a. The pH shall not be less than 3.0 not greater than 11.0. The pH shall be monitored as follows: continuous - report daily maximum and minimum. b. The discharge shall not cause excessive foam in the receiving waters. The discharge shall be essentially free of floating and settleable solids. c. Samples taken in compliance with the monitoring requirements above shall be taken at outfall 006 prior to discharge to Monguagon Creek. ^{*}Net is defined as the difference between intake and discharge values. IT IS FURTHER ORDERED that the Company will treat, control, and monitor their wastewater discharge to the extent necessary to achieve and maintain the final limitations and conditions specified below: #### 6. Final Effluent Limitations During the period beginning October 1, 1977 and lasting until the expiration of this permit, the permittee is authorized to discharge barometric condenser water, floor wash water, and noncontact cooling water from outfall OO2. Such discharge shall be limited and monitored by the permittee as specified below: | | k g/day | | Limitations
Other Limi | | Monitorina | Requirements | |---|------------------|----------------|---------------------------|------------------|--------------------------|-----------------| | Effluent
Characteristic | Daily
Average | Daily | Daily | Daily
Maximum | Measurement
Frequency | t Sample | | Flow, M ³ /Day (MGI |) | | | | 3 x weekly | | | Chl orides | | | | | 3 x weekly | 24 hr composit | | Oil and Grease | | | No Visibl | e Film | Daily | Visual Observ. | | Temperature | | | | | Daily | Reading | | COD | | | | | 3 x weekly | 24 hr composite | | Total Suspended Solids * | 844
(1856) | 1687
(3711) | | | Daily** | 24 hr composite | | Ammonia (as N) | | | 1.4 mg/l | 2.3 mg/l | 3 x weekly | 24 hr composite | | Tot al Chlorine
Residual | | | 1.0 mg/l | 1.5 mg/l | Daily | Grab | | Total Lead | 0.6
(1.37) | 1.25
(2.75) | | | Twice Month | aly 24 hr comp. | ^{*} The above limitations for Total Suspended Solids may be modified to a Net value upon demonstration to the Chief of the Water Quality Division that gross values are unattainable due to technical or economic considerations. Such modification shall be made in accordance with Part II, Section B-4, herein. #### ** When discharging The term noncontact cooling water shall mean water used for cooling which does not come into direct contact with any raw material, intermediate product, by product, waste product, or finished product. - a. The pH shall not be less than <u>6.5</u> nor greater than <u>9.5</u>. The pH shall be monitored as follows: continuous; report daily maximum and minimum. - **b.** The discharge shall not cause excessive foam in the receiving waters. The discharge shall be essentially free of floating and settleable solids. - c. The discharge shall not contain oil or other substances in amounts sufficient to create a visible film or sheen on the receiving waters. - d. Samples taken in compliance with the monitoring requirements above shall be taken at outfall 002 prior to discharge to the Detroit River. - e. In the event the permittee shall require the use of Water Treatment additives, the permittee shall notify the Michigan Water Resources Commission in accordance with the requirements of Part II, Section A-1. Permit No. <u>J002381</u> Final Order No. <u>F0 1931</u> Page Eight #### 7. Final Limitations During the period beginning April 1, 1978 and lasting until the expiration of this permit, the permittee is authorized to discharge contact cooling water, process wastes, and non-contact cooling water from outfall 003. Such discharge shall be limited and monitored by the permittee as specified below: | | | Discharge | Limitation | ıs | | • | |---------------------------------|----------------|---------------|------------|----------|-------------|-----------------| | | kg/day (| lbs/day) | Other Lim | itations | | Requirements | | Effluent | Daily | Daily | Daily | Daily | Measurement | | | Characteristic | <u>Average</u> | Maximum | Average | Maximum | Frequency | Type | | Flow, M ³ /Day (MGD) |) | | | | 3 x weekly | | | Chlorides | - | | | | 3 x weekly | 24 hr composit | | Oil and Grease | | | No Visib | le Film | Daily | Visual Observ. | | Temperature | | | . • | | Daily | Reading | | Total Suspended Solids* | 384
(844) | 768
(1689) | | | 5 x weekly | Grab | | Ammonia (as N) | | | 3 mg/l | 5 mg/l | 3 x weekly | 24 hr composit | | Total Copper | | | | 1.0 mg/l | Twice Weekl | y 24 hr compos | | Total Lead | 0.45 | 0.9
(2.0) | | | Twice Month | ly 24 hr compos | | Total Iron* | (1.0) | (2.0) | | 1.6 mg/l | Weekly | 24 hr composit | | Chlorine Residual | | | 1.0 mg/l | 1.5 mg/l | Daily | Grab | | | | | | | | | ^{*} The above limitations for Total Suspended Solids and Iron may be modified to a Net value upon demonstration to the Chief of the Water Quality Division that gross values are unattainable due to
technical or economic considerations. Such modification shall be made in accordance with Part II, Section 8-4, herein. The term noncontact cooling water means water used for cooling which does not come into direct contact with any raw material, intermediate product, by product, waste product, or finished product. - a. The phi small not be less than <u>G.5</u> nor greater than <u>9.5</u>. The pH shall be monitored as follows: <u>continuous</u>; report daily maximum and minimum. - b. The discharge shall not cause excessive foam in the receiving waters. The discharge shall be essentially free of floating and settleable solids. - c. The discharge shall not contain oil or other substances in amounts sufficient to create a visible film or sheen on the receiving waters. - d. Samples taken in compliance with the monitoring requirements above shall be taken prior to discharging to the Detroit River. - e. In the event the permittee shall require the use of Water Treatment additives, the permittee shall notify the Michigan Water Resources Commission in accordance with the requirements of Part II, Section A-1. Permit No. 1. 002381 Final Order No. FO 1931 Page Nine #### 8. Final Limitations During the period beginning April 1, 1978 and lasting until the expiration of this permit, the permittee is authorized to discharge from outfall 005. Such discharge shall be limited and monitored by the permittee as specified below: | | | Discharge | Limitations | <u>.</u> | | | |--------------------------------|---------------------------|---------------|---------------------------------|-----------------------------|-------------------------------------|--------------------------------| | Effluent
Characteristic | kg/day
Daily
Averag | Daily | Other Limi
Daily-
Average | tations
Daily
Maximum | Monitoring Measurement
Frequency | Requirements
Sample
Type | | Flow, M ³ /Day (MGD |) | | | • | Continuous | | | Total Suspended Solids* | 212
(467) | 425
(934) | 35 mg/1 | 70 mg/l | 5 x weekly | Grab | | COD | | 821
(1801) | | | 3 x weekly | 24 hr composi | | Ammonia (as N) | | | 1.0 mg/l | 1.5 mg/l | 3 x weekly | 24 hr composi | | Total Chlorine
Residual | | | 1.0 mg/l | 1.5 mg/l | Daily | Grab | | Chlorides | | | | | 3 x weekly | 24 hr composi | | Total Lead | 0.6
(1.4) | 1.2
(2.7) | 0.1 mg/1 | 0.2 mg/l | Twice Monthl | y 24 hr comp. | | Temperature | | | | | Daily | Reading | | Oil and Grease | | | No Visibl | e Film | Daily | Visual
Observation | ^{*} The above limitations for Total Suspended Solids may be modified to a net value upon demonstration to the Chief of the Water Quality Division that gross values are unattainable due to technical or economic considerations. Such modification shall be made in accordance with Part II, Section B-4, herein. ZL a. The pH shall not be less than 6.5 nor greater than 9.5. The pH shall be monitored as follows: continuous - report daily, maximum and minimum. **b.** The discharge shall not cause excessive foam in the receiving waters. The discharge shall be essentially free of floating and settleable solids. c. The discharge shall not contain oil or other substances in amounts sufficient to create a visible film or sheen on the receiving waters. d. Samples taken in compliance with the monitoring requirements above shall be taken prior to mixing with effluent from the Wyandotte-Wayne County wastewater treatment plant, at Outfall 005. Permit No. ' 2002381 Final Order No. FO 1931 Page Ten #### 9. Final Limitations During the period beginning February 1, 1978 and lasting until the expiration of this permit, the permittee is authorized to discharge from outfall 006. Such discharge shall be limited and monitored by the permittee as specified below: | | Discharge Li
kg/day (1bs/day) 0 | mitations
Other Limitations | Monitorina | Requirements | |---------------------------------|--------------------------------------|--------------------------------|--------------------------|----------------| | Effluent
Characteristic | | Daily Daily | Measurement
Frequency | Sample | | Flow, M ³ /Day (MGD) | | | 3 x weekly | | | BOD5 * | 173 259
(380) (570) | | 3 x weekly | 24 hr composit | | COD | | • | 3 x weekly | 24 hr composit | | Total Suspended
Solids | 173Net 259Net
(380)Net (570)Net | | 3 x weekly | 24 hr composit | | Chlorides | 40 00Net
(88 00)Net | | 3 x weekly | 24 hr composit | | Ammonia (as N) | 114
(250) | 1.5 mg/l 3.0 mg/l | 3 x weekly | Grab | | Total Chlorine
Residual | | 0.5 mg/l | 3 x weekly | Grab | | Phenol | 4.5 | 0.2 mg/l | 3 x weekly | 24 hr composit | | Sulfide | (10) | | Weekly | 24 hr composit | | Te mperature | , | | 3 x weekly | Reading | | Total Zinc | | 1.0 mg/1 | Twice Month | ly 24 hr comp. | | Oil and Grease | | No Visible Film | Daily | Visual Observ. | ^{*} The above limitations for BOD may be modified to a Net value upon demonstration to the Chief of the Water Quality Division that gross values are unattainable due to technical or economic considerations. Such modification shall be made in accordance with Part II, Section B-4, herein. a. The pH shall not be less than <u>6.5</u> nor greater than <u>9.5</u>. The pH shall be monitored as follows: <u>continuous - report daily maximum and minimum</u>. b. The discharge shall not cause excessive foam in the receiving waters. The discharge shall be essentially free of floating and settleable solids. c. The discharge shall not contain oil or other substances in amounts sufficient to create a visible film or sheen on the receiving waters. **d.** Samples taken in compliance with the monitoring requirements above shall be taken at outfall 005 prior to discharge to Monguagon Creek. Permit No. 1 2002381 Final Order No. FO 1931 Page Eleven #### 10. Final Effluent Limitations - Total Chloride Loading During the period beginning April 1, 1978 and lasting until the date of expiration of this permit, the permittee is authorized to discharge from outfalls 001, 002, 003 and 005. Such discharge shall be limited and monitored by the permittee as specified below: | Fén. | Discharge Limitations | Monitoring Requirements | | | |----------------------------|--------------------------------|--------------------------|----------------|--| | Effluent
Characteristic | kg/day (lbs/day) Daily Maximum | Measurement
Frequency | Sample
Type | | | Total Combined outfal | ls 001, 002, 003 and 005 | • | | | | Chlorides* | 2 27,000
(500,000) | 3 x weekly | Calculation | | ^{*} The above limitations for chlorides may be modified to a Net value upon demonstration to the Chief of the Water Quality Division that gross values are unattainable due to technical or economic considerations. Such modification shall be made in accordance with Part II, Section B-4 herein. 'Permi' No. MI 0002381 Fina de No. FO 1931 Page Twel IT IS FURTHER ORDERED that Part I-C Schedule of Compliance of NPDES Permit No. MI 0002381 issued June 20, 1975 is modified as follows: #### C. SCHEDULE OF COMPLIANCE #### Outfall 002 - a. Complete construction of said facilities on or before September 10, 1977. - **b.** Attain operational level necessary to meet the limitations specified herein on or before October 1, 1977. #### Outfalls 003 and 005 - a. Submit progress report to the Chief of the Water Quality Division specifying the status of construction on or before September 30, 1977. - b. Submit progress report to the Chief of the Water Quality Division specifying the status of construction on or before October 31, 1977. - c. Submit progress report to the Chief of the Water Quality Division specifying the status of construction on or before November 30, 1977. - d. Complete construction of said facilities on or before December 31, 1977. - e. Attain operational level necessary to meet the limitations specified herein on or before April 1, 1978. #### Outfall 006 - a. Submit progress report to the Chief of the Water Quality Division specifying the status of construction on or before September 30, 1977. - b. Submit progress report to the Chief of the Water Chality Division specifying the status of construction on or before October 31, 1977. - c. Submit progress report to the Chief of the Water Quality Division specifying the status of construction on or before November 30, 1977. - d. Complete construction of said facilities on or before December 31, 1977. - e. Attain operational level necessary to meet the limitations specified herein on or before February 1, 1978. No later than 14 calendar days following a date identified in the above schedule of compliance, the Company shall submit either a report of progress, or in the case of specific actions being required by identified dates, a written notice of compliance or noncompliance. In the latter case the notice shall include the cause of noncompliance, any remedial actions taken and the probability of meeting the next scheduled requirement. As to any interim date set forth herein the Chief of the Water Quality Division of the Department of Natural Resources may extend compliance for good cause shown, for up to 90 days without necessity of the approval of the Water Resources Commission. IT IS THEREFORE ORDERED that this Final Order will take effect on 1977, and shall be effective until May 30, 1980. RSC The Pennwalt Corporation is hereby put on notice that but for this Final Order, the Company might be subject to the Civil Penalty provisions provided by law for failure of the Company to be in full compliance by the mandated July 1, 1977, date. The Pennwalt Corporation and the Department of Natural Resources hereby agree that the Company shall forthwith pay as liquidated damages the sum of One Hundred and Fifty Thousand Dollars (\$150,000) to the General Fund of the State of Michigan. In addition to the above amounts, the Company agrees to pay the following liquidated damages: a. For those days beyond September 30, 1977 that the discharge from
Outfall 002 is in violation of the Daily Maximum Final Effluent Limitations for Outfall 002 specified herein: Two Thousand Dollars (\$2,000) per day. On January 15, 1978 the Company shall notify the Department of Natural Resources in writing of each day since September 30, 1977 for which the \$2,000 is payable under this subsection of this Order. The Company shall contemporaneously pay such amounts (if any) then accrued to the State. b. For those days beyond December 31, 1977 during which the discharges from Outfalls 003 and 005 are not treated by waste treatment facilities installed in accordance with approved plans specified in Schedule of Compliance C-2, herein: Two Thousand Dollars (\$2,000) per day. There shall be no payments required under this subsection for days during which there is no discharge, nor when final effluent limits are achieved. Beginning February 15, 1978, and on the fifteenth day of each month thereafter (through July 15, 1978) the Company shall notify the Department of Natural Resources in writing of each day of the preceding calendar month for which the \$2,000 is payable under this subsection of this Order. The Company shall contemporaneously pay such amounts (if any) then accrued to the State. c. For those days beyond March 31, 1978 that the discharges from Outfalls 003 and 005 are in violation of the Final Effluent Limitations specified for said outfalls: Two Thousand Dollars (\$2,000) per day. Beginning May 15, 1978, and on the fifteenth day of each month thereafter (through July 15, 1978) the Company shall notify the Department of Natural Resources in writing of each day of the preceding calendar month for which the \$2,000 is payable under this subsection of this Order. The Company shall contemporaneously pay such amounts (if any) then accrued to the State. A violation of the final effluent limitations for Outfall 002 after January 1, 1978, or for Outfall 006 after February 1, 1978, or for Outfalls 003 and 005 after July 1, 1978 is a violation of this Final Order. The State may seek other and further relief for noncompliance conducted after any final compliance date specified in this Order. Pennwalt Corporation is hereby put upon notice by the Commission that any material failure to comply with this Final Order may, and probably will, result in prompt enforcement action. A violation of any date in any of the schedules of compliance specified herein is a violation of the total Order. Nothing in this Order is, however, intended to or shall deprive Pennwalt Corporation of its right or privilege to petition the Water Resources Commission or such other authority as may be appropriate for review of any such violation. Permilio 7 0002381 Final Orde No. FO 1931 Page Fourteen This Final Order entered on by direction of the Michigan Water Resources Commission and the Director of the Department of Natural Resources. The Commission and the Department retain jurisdiction to modify this Order or enter such further Orders as the facts and circumstances may warrant. Chairman Approved as to Form and Substance: Pennwalt Corporation . DI +51 Dated: October 19, Approved as to Substance: Robert J. Courchaine Chief, Water Quality Division Dated: 10/14/77 *Approved as to Form: Frank J. Kolley Attorney General Stewart H. Freeman Assistant Attorney General Dated: Call 14, 1977 Approved for Entry: Michigan Department of Natural Resources Howard A. Tanner Director Bowles Lee 191055 #### PUBLIC NOTICE Michigan Water Resources Commission Box 30028 Lansing, Michigan 48909 (517) 373-8448 Date: January 23, 1981 Permit Number: MI 0002381 NOTICE: Pennwalt Corporation presently has a valid National Pollutant Discharge Elimination System (Public Law 92-500) Permit, issued June 20, 1975, to discharge treated process wastes and cooling water from its facility located at 4655 Biddle Ave., Wyandotte. The applicant is engaged in the manufacture of organic chemicals. The plant discharges its effluent to the Wye Street Storm Sewer, the Detroit River, and Monguagon Creek (Huntington Drain) a tributary to the Detroit River. The National Pollutant Discharge Elimination System Permit issued to Pennwalt Corporation required the permittee to meet certain effluent limitations and a defined schedule for the construction of new or additional wastewater treatment facilities and to attain operational level of these facilities on or before the mandated date of July 1, 1977. It was determined that the Permittee did not comply with the mandated requirement of July 1, 1977, at the above cited location. A Final Order of Abatement, Final Order No. 1931 was entered in October 1977 modifying the schedule of compliance contained in the NPDES Permit. It has been determined that the permittee did not comply with the terms and conditions of Final Order No. 1931. It is hereby noticed that the Michigan Water Resources Commission and Michigan Department of Natural Resources intended to initiate formal enforcement proceedings against the permittee for its failure to comply with Final Order No. 1931. However, enforcement proceedings will not be initiated if the Permittee agrees, stipulates and consents to the entry of a Final Order of Abatement which directs and requires the Permittee to adhere to and comply with conditions of the NPDES Permit as modified by the Final Order. The Permittee has been notified of its apparent violation with the terms and conditions of NPDES Permit No. MI 0002381 as modified by Final Order No. 1931 and has agreed to waive its right to an administrative hearing and enter into a Final Order of the Michigan Water Resources Commission. The determination to enter the Final Order is tentative. Persons wishing to comment upon, or object to, the proposed Final Order are invited to submit the same in writing to: Department of Natural Resources Water Quality Division Surface Water Compliance Section P.O. Box 30028 Lansing, Michigan 48909 The name of the Permittee and permit number should appear next to the above address on the envelope and on the first page of any submitted comments. All comments received within thirty (30) days of the date of issuance of this public notice will be considered in the final determination. If no written objections are received, the Michigan Water Resources Commission will make its final determination within sixty (60) days of the date of this notice. The proposed Final Order, and other information, are on file and may be inspected at the Water Quality Division Offices, 8th Floor, Stevens T. Mason Building, Lansing, Michigan and at the District Office located at R #3, 37205 Mouillee Road, Rockwood, Michigan 48173, at any time between 9:30 a.m. and 3:30 p.m. Monday through Friday. Copies of all other information are available at a cost of 5¢ per page. Please bring the foregoing to the attention of any persons whom you know would be interested in this matter. ej Division of Ch atron Corporation P. O. Box 70t 230 S. East Ave. Countryside, Illinois 60525 Telephone 312/482-8400 March 24, 1981 #### Gentlemen: Thank you very much for your inquiry. We have enclosed our technical literature on using carbon dioxide for water treatment. If you have any questions, please feel free to call or write us at the above address. Sincerely, CARDOX Division Chemetron Corporation John R. Cahill Applications Engineer JRC:mb Encls. number: 1023-F date: 2-1-80 tech specs SUBJECT: TYPICAL EQUIPMENT FOR WATER RECARBONATION PURPOSE: This equipment is for the dispersion of CO₂ vapor into the water to be recarbonated. #### DESCRIPTION OF SYSTEM: A typical arrangement of components necessary for an economical and well regulated water recarbonation system are shown in the adjacent diagram. The quantity of diffusers and certain other items depends on quality and amount of water to be processed. #### COMPONENTS TYPICALLY UTILIZED: ## Req'd Description - First Stage Regulator, with spring for 300 psi inlet and 90 psi outlet pressure, orifice selected for maximum flow rate desired (See Cardox Tech Spec 1037), Cardox special CO, regulators (See Cardox brochure CC-19), or equal. - Second Stage Regulator, with spring for 90 psi inlet and 0-25 psi outlet pressures, orifice selected for maximum flow rate desired (See Cardox Tech Spec 1037), Cardox special CO regulators (See Cardox brochure CC-19, or equal. - Pressure Gauge, First Stage, 2", 0-160 psi range, %" bottom connection, dual scale dial, Walter Norris Engineering Company, Part Number 301-160. (over) LOCATED NEAR BOTTOM OF TANK (SUPPORTS NOT FURNISHED) cardox lech specs number: 1036-A date: 2-15-79 Subject: PLASTIC DIFFUSER TUBE ASSEMBLY Stock No. 7-937-0002 PLASTIC DIFFUSER TUBE (ELEMENT ONLY) Stock No. 7-937-0001 <u>PURPOSE</u>: To promote efficient diffusion of a gas, such as CO₂, into a surrounding liquid medium so that the maximum amount will be absorbed by the liquid. APPLICATIONS: Wastewater, pH neutralization Potable water, pH neutralization and recarbonation DESCRIPTION: Two styles of diffusers are available. Stock No. 7-937-0002 is a complete assembly including PVC end caps cemented in place, one of which has a 3/4" female pipe thread connection. The porous element is made of white ultra high molecular weight polyethylene plastic with an approximate pore size of 50 microns. Stock No. 7-937-0001 is the porous plastic element without end caps, 24" long. It is for use as a replacement in installations originally equipped with diffusers with removable end caps. FLOW RATE: Each assembly is capable of flowing 600 SCFH of carbon dioxide vapor with less than 1 psi differential pressure. To obtain larger flows, groups of assemblies should be manifolded together. ADVANTAGES: UHMW polyethylene plastic is inherently tough and will not shatter if accidently bumped or dropped. The tube assembly is a complete unit, so no gaskets are required and installation is simplified. CLEAM RECARBOMATE CARDOX **CARBON** DIOXIDE **FROM** CHEMETRON ### CARDGA CARBON DIOXIDE MAKES THE RECARBONATION JOB
CLEAN AND EASY. CARDGA Cardox carbon dioxide gives you these vantages: IT'S CLEAN. Cardox carbon dioxide is stored as a clear, colorless liquid, in bulk. There's no mess, no smell, no smoke, no soot. IT'S PURE. Cardox carbon dioxide is 99-plus per cent pure CO₂. IT'S SAFE. There are no noxious combustion products passing into and through the water you're trying to keep pure. Cardox CO₂ does not include odorless but extremely toxic carbon monoxide and foul-smelling, highly irritating sulfur dioxide. With Cardox CO₂, there's no chance of contaminating your water or the atmosphere above. IT'S EFFICIENT. Nearly every bit of the CO₂ injected into the water is instantly captured and absorbed, disappearing without a visible trace. IT'S VERSATILE. When water quality and flow rates vary, the flow of Cardox CO₂ can be varied—instantly. With the simple adjusting of a valve. The CO₂ storage & vaporizer equipment maintains a ready supply of vapor, whatever the demand may be at the application. #### **OUR EXPERTISE: AS YET-UNEXCELLED** The Cardox Products Division of Chemetron Corporation is eminently qualified to recommend the proper sized carbon dioxide supply and vaporizer equipment and help supervise its proper installation. We have the background. Our engineers have impressive backgrounds of experience in the proper application of CO_2 through use of Cardox equipment. Many of the innovations in carbon dioxide storage and handling systems have come from this organization. And we're ready to work with you. Our engineers can supply recommendations on a Cardox carbon dioxide system best suited to your present and future requirements. And since you can either buy or lease a Cardox system, Chemetron will prepare cost comparisons between either option and you can compare the costs against your present system. ## CHEMETRON SUPPLIES THE WORKS FOR YOUR WATERWORKS' CO2 SUPPLY. Chemetron offers full-range Cardox systems, supply, and services for recarbonation. Cardox Keep-Full Delivery. We make sure we know the peaks and valleys of your carbon dioxide needs. Then we schedule our delivery of bulk liquid CO₂ to maintain your reserves. Cardox keep-full delivery means you'll never have to worry about being caught short. Cardox Recarbonation Equipment. Here's where you keep your Cardox CO₂ always at the ready—the Cardox bulk liquid storage tank. It has a white fiber-glass-reinforced resin shell for strength. And it's insulated with polyurethane foam. (Its contoured shape makes an eye-catching addition to your waterworks.) Standing alongside it would be a Cardox vaporizer of similar construction and appearance. Tank and vaporizer are made to weather the climate. CO₂ diffuser tubes for the recarbonation tank, flowmeter, gauge(s), and regulators complete your basic Cardox package. Maintenance. Chemetron field engineers will perform all required maintenance on the Cardox carbon dioxide equipment you buy or lease for a nominal charge. It's good to know that the people who built your system will be available to keep things in top working order. **Engineering Assistance**. Chemetron engineers will assist the contractor who installs your system. They'll help solve any problems that may come up anytime during start-up or day-to-day operation. #### CARDOX CO₂ STORAGE VESSEL # JUST TWO OF THE MANY MUNICIPALITIES USING CARDOX CO₂ SYSTEMS FOR RECARBONATION: shows method used to recarbonate with liquid CO₂. Simplified diagram The purification plant of Water District No. 1, Johnson County, Kansas, serves a 78-square-mile area of Northeast Johnson County, with a population of approximately 185,000. The plant was recently expanded to a design capacity of 60 million gallons daily. The liquid carbon dioxide tank at the Johnson County water district purification plant has a 24-ton capacity. Laboratory supervisor checks the liquid level and pressure gauges on the tank. The vaporizers and storage tank were designed by Chemetron Corporation's Cardox Products division. The Kansas City Water Department treatment plant at 1 N.W. Briarcliff Rd. supplies an average of 105 million gallons of water daily to over 550,000 people living in a 361-square-mile area. Recarbonation with commercial carbon dioxide is an important part of the water treatment process. An employee of the Kansas City Water Department checks the pressure and liquid level gauges on the carbon dioxide storage tank. Generally, the only work required is daily checks of equipment. Chemetron facilities—Carbon dioxide of the highest purity is produced under strictest quality control standards at Chemetron production plants throughout the United States. Chemetron maintains a nation-wide network of supply depots, supported by its own fleet of railway tank cars and transport trucks, to insure dependable delivery of Cardox CO₂. Chemetron engineering and research - Always alert to trends and new demands, Chemetron growth has been built on research. Many of the methods and devices which have helped to transform carbon dioxide's potential into practical, everyday industrial applications have come from our engineers and research facilities. Chemetron Cardox Products Division pioneered the bulk method of storing and handling liquid CO2 at low pressure. They have designed and installed fiberglass storage tanks. The external vaporizer was designed by Chemetron to provide further flexibility and economy in bulk CO2 installations. Chemetron services — Servicing industry's carbon dioxide needs is our organization of trained application engineers and technicians. With their knowledge and experience in meeting CO₂ requirements in chemical, food and industrial applications, they can design and install a carbon dioxide system matched to your specific operation. Users of Cardox CO₂ can rely on this service to give them the full advantages of carbon dioxide efficiency and economy. A COURSE OF ACTION: CALL OR WRITE. We have presented here only a brief outline of the capabilities of Chemetron Corporation in providing Cardox carbon dioxide systems for recarbonation. Your inquiry for further information will be met with an immediate response. Please write or call: # CHEMETRON Cardox Products **Chemetron Corporation** #### **REGIONAL OFFICES** CALIFORNIA San Leandro 94577 P. O. Box 2178 1470 Doolittle Dr. 415/635-9222 ILLINOIS Chicago 60609 1111 W. 48th St. 312/254-5570 MICHIGAN Dearborn 48121 P. O. Box 419 4610 Stecker Ave. 313/582-3030 NEW JERSEY Union 07083 2424 Morris Ave. 201/687-4760 TENNESSEE Memphis P. O. Box 18554 4078 Air Park St. 901/363-7310 # CARDOX® Carbon Dioxide for pH Control Today, since our natural water resources no longer seem limitless, efficient use and reuse of process water is of prime importance. Treatment of water for recycling within a plant is quite feasible. Moreover, treatment of water prior to its discharge is necessary to recover valuable chemical additives and prevent disruption of the environment as well. Industry faces restrictions on the pH and amounts of dissolved solids which it will be allowed to discharge into the waterways. ## The Alternatives To change pH to within prescribed limits, use of acids or alkalies is the obvious method first thought of. But neutralization of process water with either a strong acid or a strong base is exceptionally difficult to control as the desired pH level is approached. Moreover, this in itself will ordinarily increase rather than reduce the amount of dissolved solids in the effluent. It is not presently feasible to attempt subsequent removal of ions introduced by acid addition. The utilization of lime treatment followed by CO₂, however, is most promising. Not only does this allow us to recover valuable chemical additives, but it also allows us to accurately control pH. Such treatment yields solid matter that is quite rich in recoverable chemicals and an effluent that is pure enough to be recycled. Such water, moreover, is quite stable in pH and, in fact, ordinarily contains fewer dissolved solids than originally taken in. CHEMETRON Carbon Dioxide ## Action of the CO₂ The effluent from the lime treatment has a relatively high pH (10.5-11.5) and must be neutralized and stabilized by CO₂ action. Absorption of CO₂ by the effluent is rapid and the hydroxyl ions present are neutralized instantly. Additional CO₂ then acts to convert the newly formed carbonates into highly soluble bicarbonates with further attendant pH reduction. Before this second reaction goes to completion, the water will become balanced with respect to its residual calcium carbonate content. This scale forming constituent is then unable to drop out any longer. This occurs at a pH level that inhibits the water's ability to corrode metals it may contact. Since a nonaggressive, stable water then exists, the recarbonation is usually maintained at this point (at a pH level of 8.5-9.0). ## The CO₂ Supply Chemetron's Carbon Dioxide Division obtains CO₂ in the form of a by-product gas mixture from various industrial sources. Since it can not be stored efficiently, even as a highly concentrated vapor, it is immediately liquefied after purification. This processing converts it to an exceptionally pure clear liquid having about the same density as water. Liquid CO₂ is stored at approximately 300 PSIG and 0°F. It is thereafter kept at such conditions during transport and storage at the customer's location (in tanks of up to 31 ton capacity). For a vapor application such as this, the gaseous CO₂ above the liquid's surface is withdrawn. A vaporizer associated with the tank generates additional vapor to replenish as needed. The vaporizer is sized to maintain an adequate vapor reserve within the storage unit at the peak demand use-rate specified. At any-withdrawal rate up to the rated capacity of the vaporizer, be it momentary or constant, the needed CO₂ is readily available. The storage tank/vaporizer system instantaneously provides whatever CO₂ is called for by process valves with no operator
adjustments being involved. ## **CO**₂ and Ecology Although CO₂ is an industrial by-product gas, it is also a most vital link in nature's ecological chain. It is converted by nature into essential carbonaceous fuels. When burned to provide valuable energy, these fuels once again release CO₂. Thus CO₂ is not considered an environmental pollutant - and justifiably so. CO2 is an acid anhydride, forming mildly acidic carbonic acid in water. It reacts with carbonates to form bicarbonates. It can act to neutralize the harmful character of highly caustic chemicals while not reacting as violently as a strong acid would. With CO2 use, excessive overshoot past the desired pH value is quite unlikely. Moreover, unlike sulfates and nitrates, carbonates do not decompose in water to produce other undesirable substances. And the CO₂ content of water can be instantly and rather completely removed by subsequent water treatment. Even though sulfate and nitrate anions would be quantitatively detected, their removal would be exceptionally difficult if not impossible. ## Water Treatment To produce high purity drinking water, municipal water facilities have used lime softening for years. Essentially, in this process calcium hydroxide is added to the water, forcing calcium ions to precipitate as calcium carbonate. The CO₂ component of this carbonate was present in the water all along. This chemical process affords some distinct advantages for industrial water treatment. The physical-chemical action occurring is in fact quite unique, not being well described by chemical equations. The results of such treatment, however, show merit. Many harmful metal ions and other deleterious impurities are removed during the precipitation process. Various methods may be employed to recover the valuable ingredients of the solid material precipitated. With such a CO2 system the drawbacks of an inert gas gen. .or, such as turn down ratio limitations and high temperature CO2 within pipelines, are avoided. Moreover, unlike acid systems, special piping to hold a corrosive chemical is not required. There is no heat-of-dilution or sensible-heat-input to the water. Nor must noxious gases of combustion such as SO2 and CO be contended with. ## **Equipment Service Life** Note that the Cardox equipment isn't subjected to a corrosive chemical reagent or a combustion process. Thus, as opposed to both acid storage tanks and gas generators, it is not vulnerable to attack from the reagent it holds or provides. If it receives a minimum of proper periodic maintenance it should last indefinitely. For this reason, it may either be leased or purchased, whichever is the more desirable arrangement. Amortization of the capital investment for such CO2 equipment need not be based on merely a 5 to 7 year period. Indeed, Cardox units that have been leased longer than this have quite often been subsequently purchased. ## Summary The advantages of commercial CO2 for pH control in industry are yet to be fully realized. The use of Cardox carbon dioxide allows one to avoid the hazards associated with diluting acids or generating CO2 on site. Impurities of "technical grade" chemicals need not be a consideration if 99+ percent pure Cardox CO2 is employed instead. This docile chemical can be stored indefinitely (without loss or degradation of quality) in equipment needing but a minimum of routine maintenance. Unexpected process disruptions resulting from equipment malfunction are unlikely to occur. These are but a few of the innumerable reasons Cardox systems are ideally suited to this application. For Further Information Contact your nearest Chemetron Carbon Dioxide Office or write to Technical Services Department: CHEMETRON CARDOX DIVISION CHEMETRON CORP. 5230 S. EAST AVE. COUNTRYSIDE, IL 60525